Given name and surname:
Student No: \qquad
Signature: \qquad

INSTRUCTIONS:

1. Please write everything in ink.
2. This exam is a 'closed book' test, duration 180 minutes.
3. Only non-programmable calculators are permitted.
4. There are fourteen questions and a bonus question.

USEFUL FORMULAS:

For $x \geq 0, t \in[0,1)$ and $k=0,1,2, \ldots$, if the uniform distribution of deaths assumption holds for the life-status (x), then the following is true

$$
{ }_{t+k} p_{x} \approx(1-t)_{k} p_{x}+t_{k+1} p_{x} .
$$

Let $C:[0,1]^{2} \rightarrow[0,1]$ denote a copula function, and let $u, v \in[0,1]$, then the Fréchet-Hoeffding bounds state

$$
\max (u+v-1,0) \leq C(u, v) \leq \min (u, v)
$$

GOOD LUCK!

1. Recall that we denote by (u) a general life-status. Choose $(u)=(\stackrel{1}{x}: \bar{n}), x \geq 0, n=$ $1,2, \ldots$

- What insurance contract does this life-status correspond to? Explain in one sentence.
- Write formally the random variable $T(u)=T(\stackrel{1}{x}: \bar{n})$ as well as the probability $\mathbb{P}(T(x), \bar{n}) \geq t), t \geq 0$.
- Assume that the life-status (x) admits the uniform distribution of deaths approximation, check whether the life-status $(\underset{x}{1}: \bar{n})$ also admits the uniform distribution of deaths approximation.

2. A life of age 50 is subject to an extra hazard during the year of age 50 to 51 . If the standard probability of death from age 50 to age 51 is 0.06 , and if the extra risk may be expressed by an addition to the standard force of mortality that decreases uniformly from 0.03 at the beginning of the year to 0 at the end of the year, calculate the probability that the life will survive to age 51 .
3. Let $F_{T(x)}(s)=s$ and $F_{T(y)}(t)=t$, where $x, y \geq 0$ and $s, t \in[0,1]$. Also, let the copula function that describes the dependence between the random variables $T(x)$ and $T(y)$ be given by

$$
C(s, t)=\frac{1}{\alpha} \log \left(1+\frac{\left(\exp \left\{\alpha F_{T(x)}(s)\right\}-1\right)\left(\exp \left\{\alpha F_{T(y)}(t)\right\}-1\right)}{\exp \{\alpha\}-1} .\right), \alpha \neq 0
$$

for $s, t \in[0,1]$.

- Derive, in terms of the copula function above, the cumulative distribution function of the random variable $T(x: y)$.
- For $\tilde{T}(x: y)=T(x)^{a} \vee T(y)^{b}, a, b>0$, find the cumulative distribution function of the random variable $\tilde{T}(x: y)$.

4. Recall that the random variable Z is said to be distributed Weibull with the shape parameter $\gamma>0$ and rate parameter $\lambda>0$, succinctly, $Z \sim W e i(\gamma, \lambda)$, if it has the following cumulative distribution function

$$
\mathbb{P}(Z \leq z)=1-\exp \left\{-\lambda z^{\gamma}\right\}, z \geq 0
$$

- Check what assumptions must be made on the parameters' choice, so that the following statement is true: If the random variables $T(x)$ and $T(y)$ are independent and both distributed Weibull, so is the random variable $T(x: y)$.
- Let $T^{*}(x) \sim W e i\left(\gamma, \lambda_{x}^{*}\right), T^{*}(y) \sim W e i\left(\gamma, \lambda_{y}^{*}\right)$ and $Z \sim W e i(\gamma, \lambda)$, all mutually independent. Set

$$
T(x)=\min \left(\mathrm{T}^{*}(\mathrm{x}), \mathrm{Z}\right) \text { and } \mathrm{T}(\mathrm{y})=\min \left(\mathrm{T}^{*}(\mathrm{y}), \mathrm{Z}\right)
$$

Find $\mathbb{P}(T(x)>u, T(y)>v), u, v \in[0, \infty)$.

- Use the Fréchet-Hoeffding bounds to derive the bounds for the probability ${ }_{t} p_{x: y}$ in terms of ${ }_{t} p_{x}$ and ${ }_{t} p_{y}$, where $x, y, t \geq 0$.

5. Let $Q \in M a t_{m \times m}$ denote transition probability matrix in a homogeneous multi-state model with $m \in \mathbb{N}$ states. Prove that ${ }_{k} Q=Q^{k}, k \in \mathbb{N}$. Also show that ${ }_{k} Q$ is a stochastic matrix in the sense that all the elements in its each row sum up to one.
6. Order the following in terms of magnitude (and explain):

$$
q_{x}^{\prime(i)}, q_{x}^{(i)}, m_{x}^{\prime(i)}
$$

where $x \geq 0$ and $i \in \mathbb{N}$. Recall

$$
m_{x}^{\prime(i)}=\frac{\int_{0}^{1}{ }_{t} p_{x}^{\prime(i)} \mu_{x}^{(i)}(t) \mathrm{d} t}{\int_{0}^{1}{ }_{t}^{\prime \prime(i)} \mathrm{d} t}
$$

is the central rate of mortality.
7. On the basis of a triple decrement table, display an expression for the probability that (20) will not terminate before age (65) for cause 2.
8. Let, for $t \in[0,1]$ and $i \in \mathbb{N}$,

$$
w^{(\tau)}(t)=\frac{{ }_{t} p_{x}^{\tau}}{\int_{0}^{1} t p_{x}^{\tau} \mathrm{d} t}
$$

and

$$
w^{(i)}(t)=\frac{{ }_{t} p_{x}^{\prime(i)}}{\int_{0}^{1}{ }_{t} p_{x}^{\prime(i)} \mathrm{d} t}
$$

Assume that $i \in \mathbb{N}$ and at least one other cause of decrement have positive forces of decrement on the interval $[0,1]$. Show that $w^{(\tau)}(0)>w^{(i)}(0)$.
9. For a double-decrement table, you are given that $m_{40}^{(\tau)}=0.2$ and $q_{40}^{\prime(1)}=0.1$. Compute $q_{40}^{\prime(1)}$ assuming the uniform distribution of decrements in the associated single decrement tables.
10. Recall that the Gompertz's law of mortality is formally given by $\mu_{x}(t)=b c^{x}, b, c>0$. Find $w \geq 0$, such that

$$
{ }_{t} p_{w}={ }_{t} p_{x: y}
$$

for $t \geq 0$ and when the future life-time random variables $T(x)$ and $T(y)$ are independent.
11. Formulate the future life-time random variables $T(x: y)$ and $T(\overline{x: y})$ in terms of the random variables $T(x)$ and $T(y)$. Given that the random variables $T(x)$ and $T(y)$ are uncorrelated, show that the random variables $T(x: y)$ and $T(\overline{x: y})$ are correlated.
12. Check the following bound under the assumption of independence and dependence

$$
{ }_{t} p_{x: y} \leq{ }_{t} p_{x: 2},
$$

for $t \geq 0$.
13. Prove or disprove the identity

$$
{ }_{t} p_{x: y} \mu_{x: y}(t)+{ }_{t} p_{x: y} \mu_{\overline{x: y}}(t)={ }_{t} p_{x} \mu_{x}(t)+{ }_{t} p_{y} \mu_{y}(t),
$$

where $t, x, y \geq 0$.
14. Consider a pair of individuals of the same age, whose future life-time random variables are independent copies of the random variable $T(x), x \geq 0$. Evaluate the integral

$$
\int_{0}^{n}{ }_{t} p_{x: x} \mu_{x: x}(t) \mathrm{d} t
$$

where $n \in \mathbb{R}_{+}$.
15. Bonus Find $\stackrel{\circ}{e}_{x: y}$ if $q_{x}=q_{y}=1$ and the deaths are uniformly distributed over the year of age for each one of (x) and (y), where $x, y \geq 0$.

