Definition 0.1

- Cartesian product of two closed intervals

$$
\mathcal{B}:=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right] .
$$

- The vertices of the rectangular \mathcal{B} are the points $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
- The unit product square $\mathcal{I}^{2}:=[0,1] \times[0,1]$.
- Let \mathcal{S}_{1} and \mathcal{S}_{2} be two non-empty subsets of \bar{R}, and let $H: \mathcal{S}_{1} \times \mathcal{S}_{2} \rightarrow \mathcal{R} \subset \mathbf{R}$, then the H-volume of \mathcal{B} is

$$
V_{H}(\mathcal{B})=H\left(x_{2}, y_{2}\right)-H\left(x_{1}, y_{2}\right)-H\left(x_{2}, y_{1}\right)+H\left(x_{2}, y_{2}\right)
$$

- The function H is 2 -increasing if $V_{H}(\mathcal{B}) \geq 0$ for all rectangles \mathcal{B} that lie in the domain of H.

Note.

The fact that a bivariate function is non-decreasing in two arguments does not mean it is 2-increasing. Check at home what happens with $H(x, y)=\max (x, y)$, i.e., find $V_{H}\left(\mathcal{I}^{2}\right)$.

Definition 0.2

A copula C is a function from \mathcal{I}^{2} to \mathcal{I}, such that:

- For every u, v in \mathcal{I},

$$
C(u, 0)=C(0, v)=0
$$

and

$$
C(u, 1)=u \text { and } C(1, v)=v
$$

- C is 2 -increasing, i.e., for $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$, and $u_{1}, u_{2}, v_{1}, v_{2}$ in \mathcal{I}, we have that

$$
C\left(u_{2}, v_{2}\right)-C\left(u_{1}, v_{2}\right)-C\left(u_{2}, v_{1}\right)+C\left(u_{1}, v_{1}\right) \geq 0
$$

Note.

It can be easily seen that $C(u, v)=V_{C}([0, u] \times[0, v])$. Indeed,

$$
V_{C}([0, u] \times[0, v])=C(u, v)-C(0, v)-C(u, 0)+C(0,0)=C(u, v) .
$$

Proposition 0.1

Frechet-Hoeffding bounds Let C be a copula, then for every (u, v) in its domain, we have that

$$
\max (u+v-1,0) \leq C(u, v) \leq \min (u, v)
$$

Proof.

Let (u, v) be an arbitrary pair in \mathcal{I}^{2}. Clearly
$C(u, v) \leq C(u, 1)=u$ and also $C(u, v) \leq C(1, v)=v$. Thus $C(u, v) \leq \min (u, v)$. Furthermore, $V_{C}([u, 1] \times[v, 1]) \geq 0$ implies

$$
\begin{aligned}
V_{C}([u, 1] \times[v, 1]) & =C(1,1)-C(u, 1)-C(1, v)+C(u, v) \\
& =1-u-v+C(u, v) \geq 0
\end{aligned}
$$

thus $C(u, v) \geq u+v-1$. Then taking into account that $C(u, v) \geq 0$, completes the proof.

Proposition 0.2 (Sklar's theorem)

Let H be a joint c.d.f. with margins F and G. Then there exists a copula C, such that for all x, y in $\overline{\mathbf{R}}$, it holds that

$$
H(x, y)=C(F(x), G(y))
$$

If F and G are continuous, then C is unique. The converse is true as well.

Proposition 0.3

Let X and Y be two continuous r.v.'s with a copula $C_{X, Y}$. If a(•) and $b(\cdot)$ are strictly increasing on the ranges of X and Y, respectively, then $C_{a(X), b(Y)}=C_{X, Y}$.

Note.

Copulas as measures of dependence are invariant under strictly increasing transformations.

Proof.

Let $F_{1}, G_{1}, F_{2}, G_{2}$ be the c.d.f.'s of $X, Y, a(X)$ and $b(Y)$. We have that

$$
F_{2}(x)=\mathbf{P}[a(X) \leq x]=\mathbf{P}\left[X \leq a^{-1}(x)\right]=F_{1}\left(a^{-1}(x)\right)
$$

Also

$$
G_{2}(y)=G_{1}\left(b^{-1}(y)\right)
$$

Thus, for any x and y in $\overline{\mathbf{R}}$, we have that, using Sklar's theorem,

$$
\begin{aligned}
C_{a(X), b(Y)}\left(F_{2}(x), G_{2}(y)\right) & =\mathbf{P}[a(X) \leq x, b(Y) \leq y] \\
& =\mathbf{P}\left[X \leq a^{-1}(x), Y \leq b^{-1}(y)\right] \\
& =C_{X, Y}\left(F_{1}\left(a^{-1}(x)\right), G_{1}\left(b^{-1}(y)\right)\right) \\
& =C_{X, Y}\left(F_{2}(x), G_{2}(y)\right),
\end{aligned}
$$

which completes the proof.

Definition 0.3

The copula

$$
C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)
$$

with u and v in \mathcal{I} is called the Farlie- Gumbel - Morgenstern copula. Here $\theta \in[-1,1]$.

Note.

If $\theta=0$, then the copula becomes $C_{0}=u v$, that is the independent copula.

