Definition 0.1

- Cartesian product of two closed intervals $\mathcal{B} := [x_1, x_2] \times [y_1, y_2].$
- The vertices of the rectangular B are the points (x₁, y₁), (x₁, y₂), (x₂, y₁), (x₂, y₂).
- $\bullet~$ The unit product square $\mathcal{I}^2:=[0,~1]\times [0,~1].$
- Let S₁ and S₂ be two non-empty subsets of **R**, and let H : S₁ × S₂ → R ⊂ **R**, then the H-volume of B is

$$V_H(\mathcal{B}) = H(x_2, y_2) - H(x_1, y_2) - H(x_2, y_1) + H(x_2, y_2).$$

The function *H* is 2-increasing if *V_H*(*B*) ≥ 0 for all rectangles *B* that lie in the domain of *H*.

Note.

The fact that a bivariate function is non-decreasing in two arguments does not mean it is 2-increasing. Check at home what happens with $H(x, y) = \max(x, y)$, i.e., find $V_H(\mathcal{I}^2)$.

Definition 0.2

A copula *C* is a function from \mathcal{I}^2 to \mathcal{I} , such that:

• For every u, v in \mathcal{I} ,

$$C(u,0)=C(0,v)=0$$

and

$$C(u, 1) = u$$
 and $C(1, v) = v$.

• *C* is 2-increasing, i.e., for $u_1 \le u_2$ and $v_1 \le v_2$, and u_1, u_2, v_1, v_2 in \mathcal{I} , we have that

$$C(u_2, v_2) - C(u_1, v_2) - C(u_2, v_1) + C(u_1, v_1) \ge 0$$

Note.

It can be easily seen that $C(u, v) = V_C([0, u] \times [0, v])$. Indeed,

 $V_{C}([0, u] \times [0, v]) = C(u, v) - C(0, v) - C(u, 0) + C(0, 0) = C(u, v).$

Proposition 0.1

Frechet-Hoeffding bounds Let C be a copula, then for every (u, v) in its domain, we have that

$$\max(u+v-1,0) \leq C(u,v) \leq \min(u,v).$$

Proof.

Let (u, v) be an arbitrary pair in \mathcal{I}^2 . Clearly $C(u, v) \leq C(u, 1) = u$ and also $C(u, v) \leq C(1, v) = v$. Thus $C(u, v) \leq \min(u, v)$. Furthermore, $V_C([u, 1] \times [v, 1]) \geq 0$ implies $V_C([u, 1] \times [v, 1]) = C(1, 1) - C(u, 1) - C(1, v) + C(u, v)$

 $= 1-u-v+C(u,v)\geq 0,$

thus $C(u, v) \ge u + v - 1$. Then taking into account that $C(u, v) \ge 0$, completes the proof.

Proposition 0.2 (Sklar's theorem)

Let H be a joint c.d.f. with margins F and G. Then there exists a copula C, such that for all x, y in $\overline{\mathbf{R}}$, it holds that

H(x,y)=C(F(x),G(y)).

If F and G are continuous, then C is unique. The converse is true as well.

Proposition 0.3

Let X and Y be two continuous r.v.'s with a copula $C_{X,Y}$. If $a(\cdot)$ and $b(\cdot)$ are strictly increasing on the ranges of X and Y, respectively, then $C_{a(X),b(Y)} = C_{X,Y}$.

Note.

Copulas as measures of dependence are invariant under strictly increasing transformations.

Proof.

Let F_1 , G_1 , F_2 , G_2 be the c.d.f.'s of X, Y, a(X) and b(Y). We have that

$$F_2(x) = \mathbf{P}[a(X) \le x] = \mathbf{P}[X \le a^{-1}(x)] = F_1(a^{-1}(x)).$$

Also

$$G_2(y) = G_1(b^{-1}(y)).$$

Thus, for any x and y in $\overline{\mathbf{R}}$, we have that, using Sklar's theorem,

$$\begin{array}{lll} C_{a(X),b(Y)}(F_2(x),G_2(y)) &=& {\sf P}[a(X) \le x,b(Y) \le y] \\ &=& {\sf P}[X \le a^{-1}(x),Y \le b^{-1}(y)] \\ &=& C_{X,Y}(F_1(a^{-1}(x)),G_1(b^{-1}(y))) \\ &=& C_{X,Y}(F_2(x),G_2(y)), \end{array}$$

which completes the proof.

ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition 0.3

The copula

$$C_{\theta}(u,v) = uv + \theta uv(1-u)(1-v),$$

with *u* and *v* in \mathcal{I} is called the Farlie- Gumbel - Morgenstern copula. Here $\theta \in [-1, 1]$.

Note.

If $\theta = 0$, then the copula becomes $C_0 = uv$, that is the independent copula.

イロン 不得 とくほ とくほ とうほ