
An introduction and basic quantities of interest

Definition 1.1 (Stochastic process)
Family of random variables {Y (t) : t 2 T } is called a stochastic
process. It is called discrete if the set T is finite or countable,
and it is called continuous otherwise. Also, the set S such that
Y (t) 2 S is called the state-space of the stochastic process
{Y (t) : t 2 T }. Note that Y (t) : ⌦⇥ T ! S ✓ [0, 1).

Definition 1.2 (Non-homegenious Markov chain)
Stochastic process {Y (t) : t 2 T } is a Markov chain if (a) it is
discrete, (b) has finite number of states, and (c)

P(Y (t + 1) = s| Y (t) = st ,Y (t � 1) = st�1, . . . ,Y (0) = s0)

= P(Y (t + 1) = s| Y (t) = st)

for all t = 1, 2, 3, . . . and all s0, s1, . . . , st , s 2 S.
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We will use the notation pi,j
x = P(Y (x + 1) = j | Y (x) = i) for all

x = 1, 2, 3, . . . and all i , j 2 S.

Definition 1.3 (Transition probability matrix)

Let m = #(S), then matrix Pn 2 Matm⇥m([0, 1]) that has pi,j
x+n

as its i-th row and j-th column entry is called transition
probability matrix, and it gathers probabilities that (x) ‘jumps’
from the i-th state at time n to the j-th state at time n + 1.

Note
We must have

mX

j=1

pi,j
x+n =

mX

j=1

P(Y (x + n + 1) = j | Y (x + n) = i) = 1.

This does not have to be so for the sum of columns of the
matrix Pn.
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Example 1.1 (Simplest alive-dead situation)
Set S = {1, 2}, where {1} denotes “alive” and {2} denotes
“dead”. Then

Pn =

✓
px+n qx+n

0 1

◆
,

where obviously (Pn)1,1 + (Pn)1,2 = px+n + qx+n = 1 and also
(Pn)2,1 + (Pn)2,2 = 0 + 1 = 1.
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Example 1.2 (Multiple-decrement situation)
Set S = {0, 1, 2, . . . ,m}, where {0} denotes “alive” and
{1, 2, . . . ,m} denote various reasons of decrement. Then the
transition matrix Pn is (m + 1)⇥ (m + 1) as following

Pn =

0

BBBB@

p(⌧)
x+n q(1)

x+n q(2)
x+n · · · q(m)

x+n
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

1

CCCCA
,

where obviously the sum of row elements is equal to one.
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Example 1.3 (Multiple-life situation)
Set S = {0, 1, 2, 3}, where {0} denotes “both are alive”, {1}
denotes “(x) is alive and (y) is dead”, {2} denotes “(x) is dead
and (y) is alive”, {3} denotes “both are dead”. Then the
transition matrix Pn is as following under the assumption of
independence of the future life-time random variables

Pn =

0

BB@

px+npy+n px+nqy+n qx+npy+n qx+nqy+n
0 px+n 0 qx+n
0 0 py+n qy+n
0 0 0 1

1

CCA ,

where obviously the sum of row elements is equal to one.
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Example 1.4 (Disability situation)
Set S = {0, 1, 2, 3}, where {0} denotes “(x) is active”, {1}
denotes “(x) is temporarily disabled”, {2} denotes “(x) is
permanently disabled”, {3} denotes “(x) is dead”. Then the
transition matrix Pn is such that (Pn)2,0 = (Pn)2,1 = 0.
(Pn)3,3 = 1 and so (Pn)3,0 = (Pn)3,1 = (Pn)3,2 = 0, whereas
other probabilities are chosen so that they reflect observations.

ther popular examples are driving ratings and continuing care
retirement communities.
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Proposition 1.1
Let Y (x) be a non-homogeneous Markov Chain with
S = {1, . . . ,m}, then

k (Pn)i,j := P(Y (x+n+k) = j | Y (x+n) = i) = (PnPn+1 · · ·Pn+k�1)i,j

for non-negative and integer x , k , n and i , j 2 S.

Proof.
We will prove by induction. To start off, let x = n = 0 for
simplicity of the exposition and without loss of generality. So
what is the probability P(Y (2) = jkY (0) = i)?
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Proof.

2(P0)i,j = P(Y (2) = j | Y (0) = i)

=
mX

l=1

P(Y (2) = j | Y (1) = l ,Y (0) = i)P(Y (1) = l | Y (0) = i)

=
mX

l=1

P(Y (2) = j | Y (1) = l)P(Y (1) = l | Y (0) = i)

=
mX

l=1

(P1)l,j(P0)i,l =
mX

l=1

(P0)i,l(P1)l,j

= (P0P1)i,j
(?)
= (P2)i,j

for all i , j 2 S and the last equality holds if the Markov Chain is
homogeneous.
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Proof.
Further assume that
P(Y (k � 1) = j | Y (0) = i) = (P0P1 · · ·Pk�2)i,j for all i , j 2 S,
then

k (P0)i,j = P(Y (k) = j | Y (0) = i)

=
mX

l=1

P(Y (k) = j | Y (k � 1) = l ,Y (0) = i)P(Y (k � 1) = l | Y (0) = i)

=
mX

l=1

P(Y (k) = j | Y (k � 1) = l)(P0P1 · · ·Pk�2)i,l

=
mX

l=1

(Pk�1)l,j(P0P1 · · ·Pk�2)i,l =
mX

l=1

(P0P1 · · ·Pk�2)i,l(Pk�1)l,j

= (P0P1 · · ·Pk�1)i,j
(?)
= (Pk )i,j

for all i , j 2 S and the last equality holds if the Markov Chain is
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Corollary 1.1
Let Y (0), Y (1), . . . be a non-homogeneous Markov Chain with
S = {1, . . . ,m} and transition probability matrices P0, P1, . . .,
then

k (Pn) = Pn ⇥ Pn+1 ⇥ · · ·⇥ Pn+k�1

for non-negative and integer k , n. Also, if the Markov Chain is
homogeneous, then

k (Pn) = (Pk
n )

for non-negative and integer k , n.
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Denote by ⇡ the distribution of the random variable Y (x), and
let ⇡k = P(Y (x) = k), k 2 S.

Corollary 1.2
We have that the distribution of the random variable Y (x + k) is
⇡0(P0P1 ⇥ · · ·⇥ Pk�1).

Proof.
We have

P(Y (x + k) = j) =
mX

i=1

P(Y (x + k) = j ,Y (x) = i)

=
mX

i=1

P(Y (x + k) = j | Y (x) = i)P(Y (x) = i)

=
mX

i=1

(P0P1 ⇥ · · ·Pk�1)i,j⇡i .
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Proof.
Last line yields

P(Y (x + k) = j) =
mX

i=1

⇡i(P0P1 ⇥ · · ·Pk�1)i,j ,

which establishes the assertion.

Proposition 1.2
Consider again a non-homogeneous Markov Chain
{Y (x), x 2 T }, then

P(Y (x + n + 1) = Y (x + n + 2) = · · · = Y (x + n + k) = i | Y (x + n) = i)
= (Pn)i,i(Pn+1)i,i ⇥ · · ·⇥ (Pn+k�1)i,i ,

for non-negative and integer n, k and i 2 S.
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Proof.
As we have, by conditioning and evoking the Markovian
property,

P(Y (x + n + k) = i , Y (x + n + k � 1) = i , . . . , Y (x + n + 1) = i , Y (x + n) = i)
= P(Y (x + n + k) = i | Y (x + n + k � 1) = i , . . . , Y (x + n + 1) = i , Y (x + n) = i)
⇥ P(Y (x + n + k � 1) = i | Y (x + n + k � 2) = i , . . . , Y (x + n + 1) = i , Y (x + n) = i)

⇥ · · ·⇥ P(Y (x + n) = i)
= P(Y (x + n + k) = i | Y (x + n + k � 1) = i)
⇥ P(Y (x + n + k � 1) = i | Y (x + n + k � 2) = i)

⇥ · · ·⇥ P(Y (x + n + 1) = i | Y (x + n) = i)⇥ P(Y (x + n) = i),

then the conditional probability in the assertion follows.
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From now and on consider a continuous stochastic process
{Yx(t)}t�0 with the state space S = {0, 1, . . . ,m}, m 2 N and
T = [0, 1). We assume that:
(a) For any s � 0 and i , j 2 S, the conditional probability

P(Yx(t + s) = j | Yx(t) = i)

is independent on the history of the process for all times
before t 2 [0, 1).

(b) For any time length h > 0,

P(2 or more transitions occure within h) = o(h),

where we say that the function f (h) is o(h) if
limh!0f (h)/h = 0.
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We will use the notation

tpi,j
x = P(Yx(t) = j | Yx = i), i , j 2 S, t � 0

and

tpi,i
x = P(Yx(s) = j8s 2 [0, t ]| Yx = i), i 2 S, t � 0

(c) The function t 7! tpi,j
x is differentiable for all t 2 (0, 1).

Note that now we can define the force of transition as following

µi,j
x = lim

h#0

hpi,j
x

h
, for i 6= j 2 S.
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Note that we can say equivalently that

hpi,j
x = h ⇥ µi,j

x + o(h), for i 6= j 2 S

or in other words

hpi,j
x ⇡ h ⇥ µi,j

x , for i 6= j 2 S.

The latter expression should remind you the simple alive-dead
framework.

Proposition 1.3
For a general multiple-state model, we have for h > 0, x � 0
and i 2 S,

hpi,i
x = hpi,i

x + o(h)
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Proof.
The right hand side is obtained by the law of total probability:

hpi,i
x = P (Yx(h) = i | Yx = i)

= P (Yx(h) = i | Yx = i , 9t 2 [0, h) : Yx(t) 6= i)
⇥ P (9t 2 [0, h) : Yx(t) 6= i | Yx = i)
+ P (Yx(h) = i | Yx = i , 8t 2 [0, h) : Yx(t) = i)
⇥ P (8t 2 [0, h) : Yx(t) = i | Yx = i)
= P (Yx(h) = i ,Yx = i , 9t 2 [0, h) : Yx(t) 6= i) /P(Yx = i)
+ P (Yx(h) = i ,Yx = i , 8t 2 [0, h) : Yx(t) = i) /P(Yx = i)
= P (Yx(h) = i , 9t 2 [0, h) : Yx(t) 6= i | Yx = i)
+ P (Yx(h) = i , 8t 2 [0, h) : Yx(t) = i | Yx = i)

= o(h) + hpi,i
x ,

which completes the proof.
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Proposition 1.4
For any multiple-state model and for h > 0, x � 0 and i , j 2 S,
we have

hpi,i
x = 1 � h

mX

j=0,j 6=i

µi,j
x + o(h)

Proof.
We have

1 = hpi,i
x +

mX

j=0,j 6=i
hpi,j

x + o(h),

or
1 = hpi,i

x + h
mX

j=0,j 6=i

µi,j
x + m ⇥ o(h),

which completes the proof since m ⇥ o(h) = o(h).
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Proposition 1.5
For any multiple-state model, we have for h � 0 and i 2 S,

hpi,i
x = exp

8
<

:�
Z h

0

mX

j=0,j 6=i

µi,j
x (s)ds

9
=

;

Proof.
Start with the observation

h+�hpi,i
x = hpi,i

x ⇥ �hpi,i
x+h,

which is true for all h � 0 because {Yx}h�0 is a Markov
process.
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Proof.
Further evoking Proposition 1.4, we obtain

h+�hpi,i
x = hpi,i

x ⇥

0

@1 ��h
mX

j=0,j 6=i

µi,j
x (h) + o(�h)

1

A

or

h+�hpi,i
x � hpi,i

x = �hpi,i
x ⇥�h

mX

j=0,j 6=i

µi,j
x (h) + o(�h)

or for �h > 0

h+�hpi,i
x � hpi,i

x
�h

= �hpi,i
x

mX

j=0,j 6=i

µi,j
x (h) +

o(�h)
�h

.

Then take �h # 0, and obtain
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Proof.

d
dh hpi,i

x = �hpi,i
x

mX

j=0,j 6=i

µi,j
x (h).

This is an ODE we have already seen, and its solution is
exactly the assertion of this proposition..

Think of the ODE
f 0(h) = g(f (h), h),

that has the initial condition f (0) = c > 0; set
f (h) = hpx ,g(f (h), h) = �hpx ⇥ µx(h) such that 0px = 1. The
solution is

hpx = exp

(
�
Z h

0
µx(s)ds

)
.
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Proposition 1.6
For any multiple-state model with S = {0, 1, . . . ,m 2 N},
i , j 2 S, we have

d
dh hpi,j

x =
X

k 6=j
hpi,k

x µk ,j
x (h)� hpi,j

x
X

k 6=j

µj,k
x (h).

Proof.
Start with the expression

h+�hpi,j
x =

X

k2S
hpi,k

x ⇥ �hpk ,j
x+h

=
X

k 6=j
hpi,k

x ⇥ �hpk ,j
x+h + hpi,j

x ⇥ �hpj,j
x+h,

which hold by conditioning.
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Proof.
Further we have

h+�hpi,j
x

=
X

k 6=j
hpi,k

x ⇥ (�hµk ,j
x (h) + o(�h)) + hpi,j

x ⇥

0

@1 �
X

k 6=j
�hpj,k

x+h

1

A ,

which yields

h+�hpi,j
x � hpi,j

x

=
X

k 6=j
hpi,k

x ⇥ (�hµk ,j
x (h) + o(�h))

� hpi,j
x ⇥

X

k 6=j

⇣
�hµj,k

x (h) + o(�h)
⌘
.

Now divide by �h > 0 throughout and get
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Proof.

h+�hpi,j
x � hpi,j

x
�h

=
X

k 6=j
hpi,k

x ⇥ µk ,j
x (h)

� hpi,j
x ⇥

X

k 6=j

µj,k
x (h) + o(�h).

Finally, take the limit �h # 0, and the assertion follows.
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