Definition 1.1 (Stochastic process)

Family of random variables $\{Y(t): t \in \mathcal{T}\}$ is called a stochastic process. It is called discrete if the set \mathcal{T} is finite or countable, and it is called continuous otherwise. Also, the set \mathcal{S} such that $Y(t) \in \mathcal{S}$ is called the state-space of the stochastic process $\{Y(t): t \in \mathcal{T}\}$. Note that $Y(t): \Omega \times \mathcal{T} \to \mathcal{S} \subseteq [0, \infty)$.

Definition 1.2 (Non-homegenious Markov chain)

Stochastic process $\{Y(t): t \in \mathcal{T}\}$ is a Markov chain if (a) it is discrete, (b) has finite number of states, and (c)

$$\mathbb{P}(Y(t+1) = s | Y(t) = s_t, Y(t-1) = s_{t-1}, \dots, Y(0) = s_0)$$

= $\mathbb{P}(Y(t+1) = s | Y(t) = s_t)$

for all t = 1, 2, 3, ... and all $s_0, s_1, ..., s_t, s \in S$.

ヘロン ヘアン ヘビン ヘビン

э

We will use the notation $p_x^{i,j} = \mathbb{P}(Y(x+1) = j | Y(x) = i)$ for all x = 1, 2, 3, ... and all $i, j \in S$.

Definition 1.3 (Transition probability matrix)

Let m = #(S), then matrix $P_n \in Mat_{m \times m}([0, 1])$ that has $p_{x+n}^{i,j}$ as its *i*-th row and *j*-th column entry is called transition probability matrix, and it gathers probabilities that (x) 'jumps' from the *i*-th state at time *n* to the *j*-th state at time n + 1.

Note

We must have

$$\sum_{j=1}^{m} p_{x+n}^{i,j} = \sum_{j=1}^{m} \mathbb{P}(Y(x+n+1) = j | Y(x+n) = i) = 1.$$

This does not have to be so for the sum of columns of the matrix P_n .

Edward Furman Maths of Life contingenices MATH 3280

Example 1.1 (Simplest alive-dead situation)

Set $\mathcal{S}=\{1,\ 2\},$ where $\{1\}$ denotes "alive" and $\{2\}$ denotes "dead". Then

$$P_n = \left(egin{array}{cc} p_{x+n} & q_{x+n} \ 0 & 1 \end{array}
ight),$$

where obviously $(P_n)_{1,1} + (P_n)_{1,2} = p_{x+n} + q_{x+n} = 1$ and also $(P_n)_{2,1} + (P_n)_{2,2} = 0 + 1 = 1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Example 1.2 (Multiple-decrement situation)

Set $S = \{0, 1, 2, ..., m\}$, where $\{0\}$ denotes "alive" and $\{1, 2, ..., m\}$ denote various reasons of decrement. Then the transition matrix P_n is $(m + 1) \times (m + 1)$ as following

$$P_n = \begin{pmatrix} p_{x+n}^{(\tau)} & q_{x+n}^{(1)} & q_{x+n}^{(2)} & \cdots & q_{x+n}^{(m)} \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

where obviously the sum of row elements is equal to one.

イロト 不得 とくほ とくほ とうほ

Example 1.3 (Multiple-life situation)

Set $S = \{0, 1, 2, 3\}$, where $\{0\}$ denotes "both are alive", $\{1\}$ denotes "(*x*) is alive and (*y*) is dead", $\{2\}$ denotes "(*x*) is dead and (*y*) is alive", $\{3\}$ denotes "both are dead". Then the transition matrix P_n is as following under the assumption of independence of the future life-time random variables

$$P_n = \begin{pmatrix} p_{x+n}p_{y+n} & p_{x+n}q_{y+n} & q_{x+n}p_{y+n} & q_{x+n}q_{y+n} \\ 0 & p_{x+n} & 0 & q_{x+n} \\ 0 & 0 & p_{y+n} & q_{y+n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where obviously the sum of row elements is equal to one.

・ロト ・ 理 ト ・ ヨ ト ・

Example 1.4 (Disability situation)

Set $S = \{0, 1, 2, 3\}$, where $\{0\}$ denotes "(*x*) is active", $\{1\}$ denotes "(*x*) is temporarily disabled", $\{2\}$ denotes "(*x*) is permanently disabled", $\{3\}$ denotes "(*x*) is dead". Then the transition matrix P_n is such that $(P_n)_{2,0} = (P_n)_{2,1} = 0$. $(P_n)_{3,3} = 1$ and so $(P_n)_{3,0} = (P_n)_{3,1} = (P_n)_{3,2} = 0$, whereas other probabilities are chosen so that they reflect observations.

ther popular examples are driving ratings and continuing care retirement communities.

イロン 不良 とくほう 不良 とうほ

Proposition 1.1

Let Y(x) be a non-homogeneous Markov Chain with $S = \{1, ..., m\}$, then

$$_{k}(P_{n})_{i,j} := \mathbb{P}(Y(x+n+k) = j| Y(x+n) = i) = (P_{n}P_{n+1} \cdots P_{n+k-1})_{i,j}$$

for non-negative and integer x, k, n and $i, j \in S$.

Proof.

We will prove by induction. To start off, let x = n = 0 for simplicity of the exposition and without loss of generality. So what is the probability $\mathbb{P}(Y(2) = j || Y(0) = i)$?

イロン 不良 とくほう 不良 とうほ

$$2(P_0)_{i,j} = \mathbb{P}(Y(2) = j | Y(0) = i)$$

$$= \sum_{l=1}^{m} \mathbb{P}(Y(2) = j | Y(1) = l, Y(0) = i) \mathbb{P}(Y(1) = l | Y(0) = i)$$

$$= \sum_{l=1}^{m} \mathbb{P}(Y(2) = j | Y(1) = l) \mathbb{P}(Y(1) = l | Y(0) = i)$$

$$= \sum_{l=1}^{m} (P_1)_{l,j} (P_0)_{i,l} = \sum_{l=1}^{m} (P_0)_{i,l} (P_1)_{l,j}$$

$$= (P_0 P_1)_{i,j} \stackrel{(?)}{=} (P^2)_{i,j}$$

for all $i, j \in S$ and the last equality holds if the Markov Chain is homogeneous.

ヘロン 人間 とくほ とくほう

Further assume that

 $\mathbb{P}(Y(k-1) = j | Y(0) = i) = (P_0 P_1 \cdots P_{k-2})_{i,j}$ for all $i, j \in S$, then

for all $i, j \in S$ and the last equality holds if the Markov Chain is

Corollary 1.1

Let Y(0), Y(1),... be a non-homogeneous Markov Chain with $S = \{1, ..., m\}$ and transition probability matrices $P_0, P_1, ...,$ then

$$P_k(P_n) = P_n \times P_{n+1} \times \cdots \times P_{n+k-1}$$

for non-negative and integer k, n. Also, if the Markov Chain is homogeneous, then

$$_k(P_n)=(P_n^k)$$

for non-negative and integer k, n.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Denote by π the distribution of the random variable Y(x), and let $\pi_k = \mathbb{P}(Y(x) = k), \ k \in S$.

Corollary 1.2

We have that the distribution of the random variable Y(x + k) is $\pi'(P_0P_1 \times \cdots \times P_{k-1})$.

Proof.

We have

m

$$\mathbb{P}(Y(x+k)=j) = \sum_{i=1}^{m} \mathbb{P}(Y(x+k)=j, Y(x)=i)$$

$$= \sum_{i=1}^{m} \mathbb{P}(Y(x+k) = j | Y(x) = i) \mathbb{P}(Y(x) = i)$$
$$= \sum_{i=1}^{m} (P_0 P_1 \times \cdots P_{k-1})_{i,i} \pi_i.$$

Last line yields

$$\mathbb{P}(Y(x+k)=j)=\sum_{i=1}^m \pi_i(P_0P_1\times\cdots P_{k-1})_{i,j}$$

which establishes the assertion.

Proposition 1.2

=

Consider again a non-homogeneous Markov Chain $\{Y(x), x \in \mathcal{T}\}$, then

$$\mathbb{P}(Y(x+n+1) = Y(x+n+2) = \cdots = Y(x+n+k) = i| Y(x-k) = i| Y(x-k)$$

for non-negative and integer n, k and $i \in S$.

ヘロン 人間 とくほ とくほう

As we have, by conditioning and evoking the Markovian property,

$$\mathbb{P}(Y(x+n+k) = i, Y(x+n+k-1) = i, \dots, Y(x+n+k) = i) = i, \dots, Y(x+n+k) = i | Y(x+n+k-1) = i, \dots, Y(x+n+k) = i | Y(x+n+k-1) = i) = i | Y(x+n+k-2) = i, \dots, Y(x+k) = i | Y(x+n+k-1) = i) = \mathbb{P}(Y(x+n+k) = i) = i | Y(x+n+k-1) = i) = i | Y(x+n+k-2) = i) \\ \times \dots \times \mathbb{P}(Y(x+n+k-1) = i) | Y(x+n+k-2) = i) \times \mathbb{P}(Y(x+n+k-1) = i) = i | Y(x+n+k-2) = i),$$
then the conditional probability in the assertion follows.

ヘロン ヘアン ヘビン ヘビン

ъ

From now and on consider a continuous stochastic process $\{Y_x(t)\}_{t\geq 0}$ with the state space $S = \{0, 1, ..., m\}, m \in \mathbb{N}$ and $\mathcal{T} = [0, \infty)$. We assume that:

(a) For any $s \ge 0$ and $i, j \in S$, the conditional probability

$$\mathbb{P}(Y_x(t+s)=j|Y_x(t)=i)$$

is independent on the history of the process for all times before $t \in [0, \infty)$.

(b) For any time length h > 0,

 $\mathbb{P}(2 \text{ or more transitions occure within } h) = o(h),$

where we say that the function f(h) is o(h) if $\lim_{h\to 0} f(h)/h = 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We will use the notation

$$_{t}p_{x}^{i,j} = \mathbb{P}(Y_{x}(t) = j | Y_{x} = i), i, j \in \mathcal{S}, t \geq 0$$

and

$$_{t}p_{x}^{i,i} = \mathbb{P}(Y_{x}(s) = j \forall s \in [0, t] | Y_{x} = i), i \in \mathcal{S}, t \geq 0$$

(c) The function $t \mapsto {}_t p_x^{i,j}$ is differentiable for all $t \in (0, \infty)$.

Note that now we can define the force of transition as following

$$\mu_{x}^{i,j} = \lim_{h \downarrow 0} \frac{h \mathcal{P}_{x}^{i,j}}{h}, \text{ for } i \neq j \in \mathcal{S}.$$

イロン 不良 とくほう 不良 とうほ

Note that we can say equivalently that

$$_{h}p_{x}^{i,j} = h \times \mu_{x}^{i,j} + o(h), \text{ for } i \neq j \in \mathcal{S}$$

or in other words

$$_{h}p_{x}^{i,j}\approx h\times \mu_{x}^{i,j}, \text{ for } i\neq j\in\mathcal{S}.$$

The latter expression should remind you the simple alive-dead framework.

Proposition 1.3

For a general multiple-state model, we have for $h > 0, x \ge 0$ and $i \in S$,

$$_{h}p_{x}^{i,i} = {}_{h}p_{x}^{\overline{i,i}} + o(h)$$

・ロト ・ 理 ト ・ ヨ ト ・

ъ

The right hand side is obtained by the law of total probability:

$${}_{h}p_{x}^{i,i} = \mathbb{P}(Y_{x}(h) = i | Y_{x} = i)$$

$$= \mathbb{P}(Y_{x}(h) = i | Y_{x} = i, \exists t \in [0, h) : Y_{x}(t) \neq i)$$

$$\times \mathbb{P}(\exists t \in [0, h) : Y_{x}(t) \neq i | Y_{x} = i)$$

$$+ \mathbb{P}(Y_{x}(h) = i | Y_{x} = i, \forall t \in [0, h) : Y_{x}(t) = i)$$

$$\times \mathbb{P}(\forall t \in [0, h) : Y_{x}(t) = i | Y_{x} = i)$$

$$= \mathbb{P}(Y_{x}(h) = i, Y_{x} = i, \exists t \in [0, h) : Y_{x}(t) \neq i) / \mathbb{P}(Y_{x} = i)$$

$$+ \mathbb{P}(Y_{x}(h) = i, Y_{x} = i, \forall t \in [0, h) : Y_{x}(t) = i) / \mathbb{P}(Y_{x} = i)$$

$$= \mathbb{P}(Y_{x}(h) = i, \exists t \in [0, h) : Y_{x}(t) \neq i | Y_{x} = i)$$

$$+ \mathbb{P}(Y_{x}(h) = i, \forall t \in [0, h) : Y_{x}(t) \neq i | Y_{x} = i)$$

$$+ \mathbb{P}(Y_{x}(h) = i, \forall t \in [0, h) : Y_{x}(t) = i | Y_{x} = i)$$

$$= o(h) + hp_{x}^{\overline{i},\overline{i}},$$

which completes the proof.

Proposition 1.4

For any multiple-state model and for $h > 0, x \ge 0$ and $i, j \in S$, we have

$$_{h}p_{x}^{\overline{i,i}}=1-h\sum_{j=0,j\neq i}^{m}\mu_{x}^{i,j}+o(h)$$

Proof.

We have

$$1 = {}_{h}p_{x}^{\overline{i,i}} + \sum_{j=0,j\neq i}^{m} {}_{h}p_{x}^{i,j} + o(h),$$

or

$$1 = {}_{h}\boldsymbol{p}_{x}^{\overline{i,i}} + h \sum_{j=0,j\neq i}^{m} \mu_{x}^{i,j} + m \times \boldsymbol{o}(h),$$

which completes the proof since $m \times o(h) = o(h)$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

Proposition 1.5

For any multiple-state model, we have for $h \ge 0$ and $i \in S$,

$$_{h}p_{x}^{\overline{i,i}} = \exp\left\{-\int_{0}^{h}\sum_{j=0,j\neq i}^{m}\mu_{x}^{i,j}(s)ds
ight\}$$

Proof.

Start with the observation

$$_{h+\Delta h}p_{x}^{\overline{i,i}}={}_{h}p_{x}^{\overline{i,i}}\times {}_{\Delta h}p_{x+h}^{\overline{i,i}},$$

which is true for all $h \ge 0$ because $\{Y_x\}_{h\ge 0}$ is a Markov process.

19/24

Further evoking Proposition 1.4, we obtain

$$h_{h+\Delta h} p_x^{\overline{i,i}} = {}_h p_x^{\overline{i,i}} \times \left(1 - \Delta h \sum_{j=0, j \neq i}^m \mu_x^{i,j}(h) + o(\Delta h) \right)$$

or

$$h_{h+\Delta h}p_x^{\overline{i,i}} - h_x^{\overline{i,i}} = -h_x^{\overline{i,i}} \times \Delta h \sum_{j=0, j \neq i}^m \mu_x^{i,j}(h) + o(\Delta h)$$

or for $\Delta h > 0$

$$\frac{h+\Delta h p_{X}^{\overline{i,i}} - h p_{X}^{\overline{i,i}}}{\Delta h} = -h p_{X}^{\overline{i,i}} \sum_{j=0, j \neq i}^{m} \mu_{X}^{i,j}(h) + \frac{o(\Delta h)}{\Delta h}$$

Then take $\Delta h \downarrow 0$, and obtain

$$\frac{d}{dh}{}_{h}p_{x}^{\overline{i},\overline{i}} = -{}_{h}p_{x}^{\overline{i},\overline{i}} \sum_{j=0,j\neq i}^{m} \mu_{x}^{i,j}(h).$$

This is an ODE we have already seen, and its solution is exactly the assertion of this proposition..

Think of the ODE

$$f'(h)=g(f(h),h),$$

that has the initial condition f(0) = c > 0; set $f(h) = {}_{h}p_{x}, g(f(h), h) = -{}_{h}p_{x} \times \mu_{x}(h)$ such that ${}_{0}p_{x} = 1$. The solution is

$$_hp_x = \exp\left\{-\int_0^h \mu_x(s)ds\right\}.$$

ヘロン ヘアン ヘビン ヘビン

ъ

Proposition 1.6

For any multiple-state model with $S = \{0, 1, ..., m \in \mathbb{N}\}$, $i, j \in S$, we have

$$\frac{d}{dh}{}_h p_x^{i,j} = \sum_{k \neq j} {}_h p_x^{i,k} \mu_x^{k,j}(h) - {}_h p_x^{i,j} \sum_{k \neq j} \mu_x^{j,k}(h).$$

Proof.

Start with the expression

$$h + \Delta h p_x^{i,j} = \sum_{k \in S} {}_h p_x^{i,k} \times {}_{\Delta h} p_{x+h}^{k,j}$$
$$= \sum_{k \neq j} {}_h p_x^{i,k} \times {}_{\Delta h} p_{x+h}^{k,j} + {}_h p_x^{i,j} \times {}_{\Delta h} p_{x+h}^{j,j}$$

which hold by conditioning.

Further we have

$$_{h+\Delta h}p_{x}^{i,j}$$

$$= \sum_{k \neq j} {}_{h} p_{x}^{i,k} \times (\Delta h \mu_{x}^{k,j}(h) + o(\Delta h)) + {}_{h} p_{x}^{i,j} \times \left(1 - \sum_{k \neq j} {}_{\Delta h} p_{x+h}^{j,k}\right)$$

which yields

$$=\sum_{\substack{h+\Delta h \\ x \neq j}} p_x^{i,j} - {}_h p_x^{i,j}$$

$$=\sum_{\substack{k \neq j \\ x \neq j}} {}_h p_x^{i,k} \times (\Delta h \mu_x^{k,j}(h) + o(\Delta h))$$

$$- {}_h p_x^{i,j} \times \sum_{\substack{k \neq j \\ k \neq j}} \left(\Delta h \mu_x^{j,k}(h) + o(\Delta h) \right).$$

Now divide by $\Delta h > 0$ throughout and get

$$\frac{\underline{h} + \Delta h \boldsymbol{p}_{x}^{i,j} - h \boldsymbol{p}_{x}^{i,j}}{\Delta h}$$

$$= \sum_{k \neq j} h \boldsymbol{p}_{x}^{i,k} \times \mu_{x}^{k,j}(h)$$

$$- h \boldsymbol{p}_{x}^{i,j} \times \sum_{k \neq j} \mu_{x}^{j,k}(h) + o(\Delta h).$$

Finally, take the limit $\Delta h \downarrow 0$, and the assertion follows.

<ロ> (四) (四) (三) (三) (三) (三)