An introduction and basic quantities of interest

Definition 1.1 (Stochastic process)

Family of random variables {Y(t) : t € T} is called a stochastic

process. It is called discrete if the set T is finite or countable,

and it is called continuous otherwise. Also, the set S such that

Y(t) € S is called the state-space of the stochastic process
{Y(t): teT} Notethat Y(t): Qx T — S C [0, c0).

Definition 1.2 (Non-homegenious Markov chain)

Stochastic process {Y(t) : t € T} is a Markov chain if (a) it is

discrete, (b) has finite number of states, and (c)

P(Y(t+1) =8| Y(t) = s, Y(t — 1) = St_1, ..., Y(0) =

= P(Y(t+1)=s| Y(t) = s)

forallt=1,2,3,...and all sy, S1,...,5:,S € S.
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We will use the notation pf = P(Y(x + 1) = j| Y(x) = i) for all
x=1,2,3,...and all i, j € S.

Definition 1.3 (Transition probability matrix)

Let m = #(S), then matrix P, € Matm«m([0, 1]) that has p}/, ,
as its /i-th row and j-th column entry is called transition
probability matrix, and it gathers probabilities that (x) ‘jumps’
from the /-th state at time nto the j-th state at time n+ 1.

Note
We must have

m m
S o= STB(Y(x+ 1) =] Y(x+ )= i) = 1.
j=1 j=1

This does not have to be so for the sum of columns of the
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Example 1.1 (Simplest alive-dead situation)
Set S = {1, 2}, where {1} denotes “alive” and {2} denotes

“dead”. Then
p. — Px+n Qx+n
n 0 1 ’

where obviously (Pp)1,1 + (Pn)12 = Px+n + Qx+n = 1 and also
(Pn)2’1 + (Pn)272 =0+1=1.
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Example 1.2 (Multiple-decrement situation)

SetS ={0, 1, 2,...,m}, where {0} denotes “alive” and

{1, 2,..., m} denote various reasons of decrement. Then the
transition matrix P, is (m+ 1) x (m+ 1) as following

1
Bl G G oo G
0o 1 0 0
Pi=| 0 0 1 o |,
0 0 0 1

where obviously the sum of row elements is equal to one.
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Example 1.3 (Multiple-life situation)

Set S = {0, 1, 2,3}, where {0} denotes “both are alive”, {1}
denotes “(x) is alive and (y) is dead”, {2} denotes “(x) is dead
and (y) is alive”, {3} denotes “both are dead”. Then the
transition matrix P, is as following under the assumption of
independence of the future life-time random variables

Px+nPy+n  Px+nQy+n Qx+nPy+n QGx+nQy+n

p. — 0 Px+n 0 Qx+n
n 0 0 Py+n Qy+n ’
0 0 0 1

where obviously the sum of row elements is equal to one.

Edward Furman Maths of Life contingenices MATH 3280

6/24



An introduction and basic quantities of interest

Example 1.4 (Disability situation)

Set S = {0, 1, 2,3}, where {0} denotes “(x) is active”, {1}
denotes “(x) is temporarily disabled”, {2} denotes “(x) is
permanently disabled”, {3} denotes “(x) is dead”. Then the
transition matrix P, is such that (Pp)20 = (Pn)2,1 = 0.

(Pn)s3 =1and so (Pn)30 = (Pn)s;1 = (Pn)s2 = 0, whereas
other probabilities are chosen so that they reflect observations.

ther popular examples are driving ratings and continuing care
retirement communities.
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Proposition 1.1

Let Y(x) be a non-homogeneous Markov Chain with
S={1,...,m}, then

k(Pn)i,j = P( Y(X—l-fH-k) :_[| Y(x+n) = I) = (PnPn+1 s Pn+k—1)',j

for non-negative and integer x, k,n andi,j € S.

We will prove by induction. To start off, let x = n= 0 for
simplicity of the exposition and without loss of generality. So
what is the probability P(Y(2) = j|| Y(0) = i)? O
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? 2
= (PoP1)ij = (P9)ij

for all i,j € S and the last equality holds if the Markov Chain is
homogeneous. O
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Further assume that

P(Y(k—1)=j| Y(0) =1i) = (PoP1---Px_p)jforalli,jecsS,

then

(PO)'j = P(Y(k) =j] Y(0) =

= ZP K)y=jlY(k=1)=1,

= Y P(Y(K)=jl Y(k—1)=)(PoPy--- Pc_2)i
=1

m

= Y (Pk—1)1i(PoP1 -+ Py_2)
=

?
= (PoPy - Pi1)ij 2 (¥

= (PoPi -+ Px—2)iy(Px_1)
=

for all /./ € S and the last equality holds if the Markov Chain is
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Corollary 1.1
Let Y(0), Y(1),... be a non-homogeneous Markov Chain with
S ={1,..., m} and transition probability matrices Py, P4,...,
then

k(Pn) = Pn x Ppyq x -+ X Ppig_q

for non-negative and integer k, n. Also, if the Markov Chain is
homogeneous, then
k(Pn) = (PF)

for non-negative and integer k, n.
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Denote by 7 the distribution of the random variable Y(x), and
let 7 = P(Y(x) = k), ke S.

Corollary 1.2

We have that the distribution of the random variable Y(x + k) is
71"(POP1 X oo X Pk_1).

We have
P(Y(x + k) = ) ZP(YX+k)f/,Y() i)

i=1

P(Y(x+ k) =j| Y(x)=D)P(Y(x)=1)

Il
NE

Il
R

(PoP1 X -+ Px_1)ijmi.

[l
NE

1
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Proof.

Last line yields

m
P(Y(x+K)=J) =Y _ mi(PoPs x - Pc_1)ij,
i=

which establishes the assertion.

Proposition 1.2

Consider again a non-homogeneous Markov Chain
{Y(x), x € T}, then

P(Y(x+n+1)=YXx+n+2)=---=Y(x+n+k) =1
= (Pn)ii(Pns1)ij x - % (Ppyk—1)iis

for non-negative and integer n,k andi € S.

Edward Furman Maths of Life contingenices MATH 3280

Y(x -

13/24



An introduction and basic quantities of interest

As we have, by conditioning and evoking the Markovian

property,

X e X

P(Y(x+n+Kk) =i, YX+n+k—-1)=1i, ..., Y(x+n+
P(Y(x+n+Kk)=ilY(x+n+k—-1)=1, ...,Y(x+n+
P(Y(x+n+k—-1)=ilY(x+n+k—-2)=1i, ..., Y(x+

~

P
P
P

X+n+k)y=ilY(x+n+k—-1)=1)
X+n+k—-1)=ilYx+n+k—-2)=)

(Y(
(Y(
(Y(
(Y(x+n)=1)
(Y(
(Y(
(Y(x+n+1)=ilY(x+n)=i)xP(Y(x+n)=

then the conditional probability in the assertion follows.
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From now and on consider a continuous stochastic process
{Yx(t)}+>0 with the state space S = {0, 1, ..., m}, me N and
T =0, ). We assume that:

(a) Forany s > 0and i,j € S, the conditional probability
P(Yx(t+ ) =j| Yx(t) =)

is independent on the history of the process for all times
before t € [0, o0).

(b) For any time length h > 0,
IP(2 or more transitions occure within h) = o(h),

where we say that the function f(h) is o(h) if
limy_of(h)/h = 0.
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We will use the notation
o =P(Yy(t)=j| Ye=1), ,j€S, t>0
and

PL =P(Yy(s) = Nse 0, f]] Yy=i), icS, t>0
(c) The function t — tpﬁgj is differentiable for all t € (0, ).

Note that now we can define the force of transition as following

if
hpxj
h 9

" — lim fori#jcS.
125% h10 #J
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Note that we can say equivalently that
WO =hx i +o(h), fori#jes
or in other words
i7j /'7]' g 5
WPy =~ hx uy, fori#jeS.

The latter expression should remind you the simple alive-dead
framework.

Proposition 1.3

For a general multiple-state model, we have forh > 0, x >0
andi €S,

nox = npx + o(h)
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The right hand side is obtained by the law of total probability:

oy =P (Ya(h) =] Yx=1)
= P(Yx(h)=1i| Yy =1i,3te[0, h): Yu(t) £ i)
x P@Etel0, h): Yi(t) #i] Y =)
+ P(Yx(h)=1i| Yy =iVt e[0, h): Yi(t) =)
x P(Vte0, h): Yy(t) =i Yy =)

— B(Ye(h) =i, Y= i3t e [0, h): Yelt) £ 1)
+ P(Yx(h)=1i,Yx=1ivte[0, h): Yx(t)=1)
= B(Yi(h) =i, 3t [0, h): Va(t) £ 1] Ye=1)
+ P(Yx(h)=i,vte [0, h): Yx(t)=1i] Yx =)
= O(h)+th7

which completes the proof.
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Proposition 1.4

For any multiple-state model and forh > 0, x > 0 andi,j € S,
we have

oy =1—h " ud +o(h)
j=0,j#i

Proof.

We have — m )
T=pod'+ Y wpld +o(h),
j=0,ji
or — i y
T=pod' +h > pd+mxo(h),
j=0,j#i
which completes the proof since m x o(h) = o(h). O
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Proposition 1.5

For any multiple-state model, we have forh > 0 and i € S,

WPy = exp / Z Y(s)ds

0 j—0i

Proof
Start with the observation

i.i i, i,
h+AhPx = hPx X AhPyy p»

which is true for all h > 0 because { Yx}»>o is a Markov
process. O
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Proof
Further evoking Proposition 1.4, we obtain

heanPy = noy x |1 —Ah Z h) + o(Ah)
J=0,j#i
or
h+Ahpx - hpx = _hpx x Ah Z h) + o(Ah)
J=0,#i
orfor Ah >0
i i m
;' — hPx i i o(Ah
h+Ahp£h hPx _ _hp;(,l Z N;j(h) + (Ah )
J=0,#i

Then take Ah | 0, and obtain
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Proof.

d i Y,
gRhPY = —hPx > (h).
j=0,j#i
This is an ODE we have already seen, and its solution is
exactly the assertion of this proposition.. Ol

Think of the ODE
f'(h) = g(f(h), h),
that has the initial condition f(0) = ¢ > 0; set
f(h) = npx,g(f(h), h) = —ppx x px(h) such that gpx = 1. The

solution is .
hPx = €Xp {—/0 ,Ux(s)ds} :
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Proposition 1.6

For any multiple-state model with S = {0, 1, ..., m € N},
i,j €S, we have

hhpx”zz noX 1 (h) — w7 1 (h).

k) k#j

Proof
Start with the expression

I _ i,k kij
h+AhPx = Z hPx X AhPyip
keS

ik K.j . o
= Z hPx X AhPy ' p T hPx X Ahpﬁ(+h7
k#j

which hold by conditioning. N

Edward Furman Maths of Life contingenices MATH 3280 22/24



An introduction and basic quantities of interest

Proof.
Further we have

h+AhPf(’j
= >R x (AhI (h) + o(Ah) + ol x (1= anlls
k#j k#j
which yields
h+AhPf(’j - hpj(’j

= > wp¥ x (Ahug!(h) + o(Ah))
k#j

— il x Y (A () + o(ah)) .
k#j

Now divide by Ah > 0 throughout and get Ol
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. .
h+AhPx — hPx
Ah

Z'D Xﬂx()

ki

— w0 x>k (h) + o(ah).

k]

Finally, take the limit Ah | 0, and the assertion follows.
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