Definition 1.1 (Stochastic process)

Family of random variables $\{Y(t): t \in \mathcal{T}\}$ is called a stochastic process. It is called discrete if the set \mathcal{T} is finite or countable, and it is called continuous otherwise. Also, the set \mathcal{S} such that $Y(t) \in \mathcal{S}$ is called the state-space of the stochastic process $\{Y(t): t \in \mathcal{T}\}$. Note that $Y(t): \Omega \times \mathcal{T} \rightarrow \mathcal{S} \subseteq[0, \infty)$.

Definition 1.2 (Non-homegenious Markov chain)

Stochastic process $\{Y(t): t \in \mathcal{T}\}$ is a Markov chain if (a) it is discrete, (b) has finite number of states, and (c)

$$
\begin{aligned}
& \mathbb{P}\left(Y(t+1)=s \mid Y(t)=s_{t}, Y(t-1)=s_{t-1}, \ldots, Y(0)=s_{0}\right) \\
= & \mathbb{P}\left(Y(t+1)=s \mid Y(t)=s_{t}\right)
\end{aligned}
$$

for all $t=1,2,3, \ldots$ and all $s_{0}, s_{1}, \ldots, s_{t}, s \in \mathcal{S}$.

We will use the notation $p_{x}^{i, j}=\mathbb{P}(Y(x+1)=j \mid Y(x)=i)$ for all $x=1,2,3, \ldots$ and all $i, j \in \mathcal{S}$.

Definition 1.3 (Transition probability matrix)

Let $m=\#(\mathcal{S})$, then matrix $P_{n} \in \operatorname{Mat} t_{m \times m}([0,1])$ that has $p_{x+n}^{i, j}$ as its i-th row and j-th column entry is called transition probability matrix, and it gathers probabilities that (x) 'jumps' from the i-th state at time n to the j-th state at time $n+1$.

Note

We must have

$$
\sum_{j=1}^{m} p_{x+n}^{i, j}=\sum_{j=1}^{m} \mathbb{P}(Y(x+n+1)=j \mid Y(x+n)=i)=1
$$

This does not have to be so for the sum of columns of the matrix P_{n}.

Example 1.1 (Simplest alive-dead situation)

Set $\mathcal{S}=\{1,2\}$, where $\{1\}$ denotes "alive" and $\{2\}$ denotes "dead". Then

$$
P_{n}=\left(\begin{array}{cc}
p_{x+n} & q_{x+n} \\
0 & 1
\end{array}\right)
$$

where obviously $\left(P_{n}\right)_{1,1}+\left(P_{n}\right)_{1,2}=p_{x+n}+q_{x+n}=1$ and also $\left(P_{n}\right)_{2,1}+\left(P_{n}\right)_{2,2}=0+1=1$.

Example 1.2 (Multiple-decrement situation)

Set $\mathcal{S}=\{0,1,2, \ldots, m\}$, where $\{0\}$ denotes "alive" and $\{1,2, \ldots, m\}$ denote various reasons of decrement. Then the transition matrix P_{n} is $(m+1) \times(m+1)$ as following

$$
P_{n}=\left(\begin{array}{ccccc}
p_{x+n}^{(\tau)} & q_{x+n}^{(1)} & q_{x+n}^{(2)} & \cdots & q_{x+n}^{(m)} \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

where obviously the sum of row elements is equal to one.

Example 1.3 (Multiple-life situation)

Set $\mathcal{S}=\{0,1,2,3\}$, where $\{0\}$ denotes "both are alive", $\{1\}$ denotes " (x) is alive and (y) is dead", $\{2\}$ denotes " (x) is dead and (y) is alive", $\{3\}$ denotes "both are dead". Then the transition matrix P_{n} is as following under the assumption of independence of the future life-time random variables

$$
P_{n}=\left(\begin{array}{cccc}
p_{x+n} p_{y+n} & p_{x+n} q_{y+n} & q_{x+n} p_{y+n} & q_{x+n} q_{y+n} \\
0 & p_{x+n} & 0 & q_{x+n} \\
0 & 0 & p_{y+n} & q_{y+n} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where obviously the sum of row elements is equal to one.

Example 1.4 (Disability situation)

Set $\mathcal{S}=\{0,1,2,3\}$, where $\{0\}$ denotes " (x) is active", $\{1\}$ denotes " (x) is temporarily disabled", $\{2\}$ denotes " (x) is permanently disabled", $\{3\}$ denotes " (x) is dead". Then the transition matrix P_{n} is such that $\left(P_{n}\right)_{2,0}=\left(P_{n}\right)_{2,1}=0$. $\left(P_{n}\right)_{3,3}=1$ and so $\left(P_{n}\right)_{3,0}=\left(P_{n}\right)_{3,1}=\left(P_{n}\right)_{3,2}=0$, whereas other probabilities are chosen so that they reflect observations.
ther popular examples are driving ratings and continuing care retirement communities.

Proposition 1.1

Let $Y(x)$ be a non-homogeneous Markov Chain with $\mathcal{S}=\{1, \ldots, m\}$, then
${ }_{k}\left(P_{n}\right)_{i, j}:=\mathbb{P}(Y(x+n+k)=j \mid Y(x+n)=i)=\left(P_{n} P_{n+1} \cdots P_{n+k-1}\right)_{i, j}$
for non-negative and integer x, k, n and $i, j \in \mathcal{S}$.

Proof.

We will prove by induction. To start off, let $x=n=0$ for simplicity of the exposition and without loss of generality. So what is the probability $\mathbb{P}(Y(2)=j \| Y(0)=i)$?

Proof.

$$
\begin{aligned}
& 2\left(P_{0}\right)_{i, j}=\mathbb{P}(Y(2)=j \mid Y(0)=i) \\
= & \sum_{l=1}^{m} \mathbb{P}(Y(2)=j \mid Y(1)=I, Y(0)=i) \mathbb{P}(Y(1)=I \mid Y(0)=i) \\
= & \sum_{l=1}^{m} \mathbb{P}(Y(2)=j \mid Y(1)=I) \mathbb{P}(Y(1)=I \mid Y(0)=i) \\
= & \sum_{l=1}^{m}\left(P_{1}\right)_{l, j}\left(P_{0}\right)_{i, l}=\sum_{l=1}^{m}\left(P_{0}\right)_{i, l}\left(P_{1}\right)_{l, j} \\
= & \left(P_{0} P_{1}\right)_{i, j} \stackrel{(?)}{=}\left(P^{2}\right)_{i, j}
\end{aligned}
$$

for all $i, j \in \mathcal{S}$ and the last equality holds if the Markov Chain is homogeneous.

Proof.

Further assume that
$\mathbb{P}(Y(k-1)=j \mid Y(0)=i)=\left(P_{0} P_{1} \ldots P_{k-2}\right)_{i, j}$ for all $i, j \in \mathcal{S}$, then

$$
\begin{aligned}
& k\left(P_{0}\right)_{i, j}=\mathbb{P}(Y(k)=j \mid Y(0)=i) \\
= & \sum_{l=1}^{m} \mathbb{P}(Y(k)=j \mid Y(k-1)=I, Y(0)=i) \mathbb{P}(Y(k-1)=I \mid Y(0)=I \\
= & \sum_{l=1}^{m} \mathbb{P}(Y(k)=j \mid Y(k-1)=I)\left(P_{0} P_{1} \ldots P_{k-2}\right)_{i, l} \\
= & \sum_{l=1}^{m}\left(P_{k-1}\right)_{I, j}\left(P_{0} P_{1} \ldots P_{k-2}\right)_{i, I}=\sum_{l=1}^{m}\left(P_{0} P_{1} \ldots P_{k-2}\right)_{i, l}\left(P_{k-1}\right)_{l, j} \\
= & \left(P_{0} P_{1} \ldots P_{k-1}\right)_{i, j} \stackrel{(?)}{=}\left(P^{k}\right)_{i, j}
\end{aligned}
$$

for all $i, j \in \mathcal{S}$ and the last equality holds if the Markov Chain is

Corollary 1.1

Let $Y(0), Y(1), \ldots$ be a non-homogeneous Markov Chain with $\mathcal{S}=\{1, \ldots, m\}$ and transition probability matrices P_{0}, P_{1}, \ldots, then

$$
k\left(P_{n}\right)=P_{n} \times P_{n+1} \times \cdots \times P_{n+k-1}
$$

for non-negative and integer k, n. Also, if the Markov Chain is homogeneous, then

$$
k\left(P_{n}\right)=\left(P_{n}^{k}\right)
$$

for non-negative and integer k, n.

Denote by π the distribution of the random variable $Y(x)$, and let $\pi_{k}=\mathbb{P}(Y(x)=k), k \in \mathcal{S}$.

Corollary 1.2

We have that the distribution of the random variable $Y(x+k)$ is $\pi^{\prime}\left(P_{0} P_{1} \times \cdots \times P_{k-1}\right)$.

Proof.

We have

$$
\begin{aligned}
& \mathbb{P}(Y(x+k)=j)=\sum_{i=1}^{m} \mathbb{P}(Y(x+k)=j, Y(x)=i) \\
= & \sum_{i=1}^{m} \mathbb{P}(Y(x+k)=j \mid Y(x)=i) \mathbb{P}(Y(x)=i) \\
= & \sum_{i=1}^{m}\left(P_{0} P_{1} \times \cdots P_{k-1}\right)_{i, j} \pi_{i} .
\end{aligned}
$$

Proof.

Last line yields

$$
\mathbb{P}(Y(x+k)=j)=\sum_{i=1}^{m} \pi_{i}\left(P_{0} P_{1} \times \cdots P_{k-1}\right)_{i, j}
$$

which establishes the assertion.

Proposition 1.2

Consider again a non-homogeneous Markov Chain $\{Y(x), x \in \mathcal{T}\}$, then

$$
\begin{aligned}
& \mathbb{P}(Y(x+n+1)=Y(x+n+2)=\cdots=Y(x+n+k)=i \mid Y(x- \\
= & \left(P_{n}\right)_{i, i}\left(P_{n+1}\right)_{i, i} \times \cdots \times\left(P_{n+k-1}\right)_{i, i},
\end{aligned}
$$

for non-negative and integer n, k and $i \in \mathbb{S}$.

Proof.

As we have, by conditioning and evoking the Markovian property,

$$
\begin{array}{cl}
& \mathbb{P}(Y(x+n+k)=i, Y(x+n+k-1)=i, \ldots, Y(x+n+ \\
= & \mathbb{P}(Y(x+n+k)=i \mid Y(x+n+k-1)=i, \ldots, Y(x+n+ \\
\times & \mathbb{P}(Y(x+n+k-1)=i \mid Y(x+n+k-2)=i, \ldots, Y(x+ \\
\times \cdots \times & \mathbb{P}(Y(x+n)=i) \\
= & \mathbb{P}(Y(x+n+k)=i \mid Y(x+n+k-1)=i) \\
\times & \mathbb{P}(Y(x+n+k-1)=i \mid Y(x+n+k-2)=i) \\
\times \cdots \times & \mathbb{P}(Y(x+n+1)=i \mid Y(x+n)=i) \times \mathbb{P}(Y(x+n)=i),
\end{array}
$$

then the conditional probability in the assertion follows.

From now and on consider a continuous stochastic process $\left\{Y_{x}(t)\right\}_{t \geq 0}$ with the state space $\mathcal{S}=\{0,1, \ldots, m\}, m \in \mathbb{N}$ and $\mathcal{T}=[0, \infty)$. We assume that:
(a) For any $s \geq 0$ and $i, j \in \mathcal{S}$, the conditional probability

$$
\mathbb{P}\left(Y_{x}(t+s)=j \mid Y_{x}(t)=i\right)
$$

is independent on the history of the process for all times before $t \in[0, \infty)$.
(b) For any time length $h>0$,

$$
\mathbb{P}(2 \text { or more transitions occure within } \mathrm{h})=o(h),
$$

where we say that the function $f(h)$ is $o(h)$ if $\lim _{h \rightarrow 0} f(h) / h=0$.

We will use the notation

$$
{ }_{t} p_{x}^{i, j}=\mathbb{P}\left(Y_{x}(t)=j \mid Y_{x}=i\right), i, j \in \mathcal{S}, t \geq 0
$$

and

$$
{ }_{t} p_{x}^{\overline{i, i}}=\mathbb{P}\left(Y_{x}(s)=j \forall s \in[0, t] \mid Y_{x}=i\right), i \in \mathcal{S}, t \geq 0
$$

(c) The function $t \mapsto{ }_{t} p_{x}^{i, j}$ is differentiable for all $t \in(0, \infty)$.

Note that now we can define the force of transition as following

$$
\mu_{x}^{i, j}=\lim _{h \downarrow 0} \frac{h p_{x}^{i, j}}{h}, \text { for } i \neq j \in \mathcal{S}
$$

Note that we can say equivalently that

$$
{ }_{h} p_{x}^{i, j}=h \times \mu_{x}^{i, j}+o(h), \text { for } i \neq j \in \mathcal{S}
$$

or in other words

$$
{ }_{n} p_{x}^{i, j} \approx h \times \mu_{x}^{i, j}, \text { for } i \neq j \in \mathcal{S}
$$

The latter expression should remind you the simple alive-dead framework.

Proposition 1.3

For a general multiple-state model, we have for $h>0, x \geq 0$ and $i \in \mathcal{S}$,

$$
{ }_{n} p_{x}^{i, i}={ }_{h} p_{x}^{\overline{i, i}}+o(h)
$$

Proof.

The right hand side is obtained by the law of total probability:

$$
\begin{aligned}
& { }_{\mathrm{h}}^{\mathrm{i}, i}=\mathbb{P}\left(Y_{x}(h)=i \mid Y_{x}=i\right) \\
= & \mathbb{P}\left(Y_{x}(h)=i \mid Y_{x}=i, \exists t \in[0, h): Y_{x}(t) \neq i\right) \\
\times & \mathbb{P}\left(\exists t \in[0, h): Y_{x}(t) \neq i \mid Y_{x}=i\right) \\
+ & \mathbb{P}\left(Y_{x}(h)=i \mid Y_{x}=i, \forall t \in[0, h): Y_{x}(t)=i\right) \\
\times & \mathbb{P}\left(\forall t \in[0, h): Y_{x}(t)=i \mid Y_{x}=i\right) \\
= & \mathbb{P}\left(Y_{x}(h)=i, Y_{x}=i, \exists t \in[0, h): Y_{x}(t) \neq i\right) / \mathbb{P}\left(Y_{x}=i\right) \\
+ & \mathbb{P}\left(Y_{x}(h)=i, Y_{x}=i, \forall t \in[0, h): Y_{x}(t)=i\right) / \mathbb{P}\left(Y_{x}=i\right) \\
= & \mathbb{P}\left(Y_{x}(h)=i, \exists t \in[0, h): Y_{x}(t) \neq i \mid Y_{x}=i\right) \\
+ & \mathbb{P}\left(Y_{x}(h)=i, \forall t \in[0, h): Y_{x}(t)=i \mid Y_{x}=i\right) \\
= & o(h)+{ }_{h} p_{x}^{, i},
\end{aligned}
$$

which completes the proof.

Proposition 1.4

For any multiple-state model and for $h>0, x \geq 0$ and $i, j \in \mathcal{S}$, we have

$$
{ }_{n} p_{x}^{\overline{i, i}}=1-h \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}+o(h)
$$

Proof.

We have

$$
1={ }_{n} p_{x}^{\overline{i, i}}+\sum_{j=0, j \neq i}^{m} n p_{x}^{i, j}+o(h)
$$

or

$$
1={ }_{h} p_{x}^{\overline{i, i}}+h \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}+m \times o(h),
$$

which completes the proof since $m \times o(h)=o(h)$.

Proposition 1.5

For any multiple-state model, we have for $h \geq 0$ and $i \in \mathcal{S}$,

$$
{ }_{n} p_{x}^{\overline{i, i}}=\exp \left\{-\int_{0}^{h} \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}(s) d s\right\}
$$

Proof.

Start with the observation

$$
h+\Delta h p_{x}^{\overline{i, i}}={ }_{h} p_{x}^{\overline{i, i}} \times \Delta h p_{x+h}^{\overline{i, i}}
$$

which is true for all $h \geq 0$ because $\left\{Y_{x}\right\}_{h \geq 0}$ is a Markov process.

Proof.

Further evoking Proposition 1.4, we obtain

$$
h+\Delta h p_{x}^{\overline{i, i}}={ }_{h} p_{x}^{\overline{i, i}} \times\left(1-\Delta h \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}(h)+o(\Delta h)\right)
$$

or

$$
h+\Delta h p_{x}^{\overline{i, i}}-{ }_{n} p_{x}^{\overline{, i}}=-{ }_{n} p_{x}^{\overline{i, i}} \times \Delta h \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}(h)+o(\Delta h)
$$

or for $\Delta h>0$

$$
\frac{h+\Delta h p_{x}^{\overline{i, i}}-{ }_{h} p_{x}^{\overline{i, i}}}{\Delta h}=-{ }_{h} p_{x}^{\overline{i, i}} \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}(h)+\frac{o(\Delta h)}{\Delta h}
$$

Then take $\Delta h \downarrow 0$, and obtain

Proof.

$$
\frac{d}{d h}{ }^{h} p_{x}^{\overline{i, i}}=-{ }_{h} p_{x}^{\overline{i, i}} \sum_{j=0, j \neq i}^{m} \mu_{x}^{i, j}(h)
$$

This is an ODE we have already seen, and its solution is exactly the assertion of this proposition..

Think of the ODE

$$
f^{\prime}(h)=g(f(h), h)
$$

that has the initial condition $f(0)=c>0$; set $f(h)={ }_{h} p_{x}, g(f(h), h)=-{ }_{h} p_{x} \times \mu_{x}(h)$ such that ${ }_{o} p_{x}=1$. The solution is

$$
{ }_{n} p_{x}=\exp \left\{-\int_{0}^{h} \mu_{x}(s) d s\right\}
$$

Proposition 1.6

For any multiple-state model with $\mathcal{S}=\{0,1, \ldots, m \in \mathbb{N}\}$, $i, j \in \mathcal{S}$, we have

$$
\frac{d}{d h} h p_{x}^{i, j}=\sum_{k \neq j} h p_{x}^{i, k} \mu_{x}^{k, j}(h)-{ }_{h} p_{x}^{i, j} \sum_{k \neq j} \mu_{x}^{j, k}(h)
$$

Proof.

Start with the expression

$$
\begin{aligned}
& h+\Delta h p_{x}^{i, j}=\sum_{k \in \mathcal{S}}{ }_{h} p_{x}^{i, k} \times \Delta h p_{x+h}^{k, j} \\
= & \sum_{k \neq j} n p_{x}^{i, k} \times \Delta h p_{x+h}^{k, j}+h p_{x}^{i, j} \times \Delta h p_{x+h}^{j, j},
\end{aligned}
$$

which hold by conditioning.

Proof.

Further we have

$$
=\sum_{k \neq j} h p_{x}^{i, k} \times\left(\Delta h p_{x}^{i, j} \mu_{x}^{k, j}(h)+o(\Delta h)\right)+{ }_{h} p_{x}^{i, j} \times\left(1-\sum_{k \neq j} \Delta h p_{x+h}^{j, k}\right)
$$

which yields

$$
\begin{aligned}
& =\sum_{k \neq j}{ }_{n+\Delta h} p_{x}^{i, j}-{ }_{n}^{i, k} \times\left(\Delta h p_{x}^{i, j}\right. \\
- & { }_{n} p_{x}^{i, j} \times \sum_{k \neq j}\left(\Delta h \mu_{x}^{j, k}(h)+o(\Delta h)\right)
\end{aligned}
$$

Now divide by $\Delta h>0$ throughout and get

Proof.

$$
\begin{aligned}
& \frac{h+\Delta h p_{x}^{i, j}-h p_{x}^{i, j}}{\Delta h} \\
= & \sum_{k \neq j}{ }_{n} p_{x}^{i, k} \times \mu_{x}^{k, j}(h) \\
- & h p_{x}^{i, j} \times \sum_{k \neq j} \mu_{x}^{j, k}(h)+o(\Delta h) .
\end{aligned}
$$

Finally, take the limit $\Delta h \downarrow 0$, and the assertion follows.

