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We seek 3Q
(2,2)
0 , which is the (2, 2)-entry of Q3. Rather than proceeding

as in the preceding Example, consider the following approach. Note that
if ej denotes an n ⇥ 1 column matrix with 1 as its jth entry and 0 as its
other entries, then for any k ⇥ n matrix M the product Mej is just the
jth column of M. Therefore the desired 3Q

(2,2)
0 , which is the (2, 2)-entry

of Q3, is just the bottom entry of

Q3e2 = Q2(Qe2) =


0.6 0.4
0.3 0.7

� 
0.6 0.4
0.3 0.7

� 
0.4
0.7

�

=


0.6 0.4
0.3 0.7

� 
0.52
0.61

�
=


0.556
0.583

�
,

giving 0.583 for the answer.

There’s another probability that will prove central to computations in Section
2.2: for a subject in State #s at time n, the probability of making the transition
from State #i at time n+k to State #j at time n+k+1. In order to possibly make
this transition, the subject first must be in State #i at time n+k. Since the subject
is now in State #s at time n, the probability of this is kQ(s,i)

n . The probability of
the transition then from State #i to State #j is Q(i,j)

n+k. The product kQ(s,i)
n Q(i,j)

n+k
of these two probabilities gives the probability of the transition in question. That
is,

(1.23) Theorem (future transition probabilities). Given that a subject is in State
#s at time n, the probability of making the transition from State #i at
time n + k to State #j at time n + k + 1 is given by kQ(s,i)

n Q(i,j)
n+k.

Problems

1. A basic aggregate survival model as in Example 1.1 follows the DeMoivre Law
with ultimate age ! = 100. As in Example 1.8, find the matrix Q30 for a
person aged x = 60.
[Answer: the first row contains 0.9 and 0.1, the second 0 and 1.]

2. Consider a multiple-life model as in Example 1.10 for independent lives aged
x = 60 and y = 75 subject to a DeMoivre Law with ! = 100. As in Example
1.10, find Q(1,2)

10 .
[Answer: 29

450 .]
3. For the model in Example 1.17, find 3Q(2,1).

[Answer: 0.608.]
4. As in Example 1.5, consider a driver-ratings model in which drivers move among

the classifications Preferred, Standard, and Substandard at the end of each
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year. Each year: 60% of Preferreds are reclassified as Preferred, 30% as Stan-
dard, and 10% as substandard; 50% of Standards are reclassified as Standard,
30% as Preferred, and 20% as Substandard; and 60% of Substandards are re-
classified as Substandard, 40% as Standard, and 0% as Preferred. Find the
probability that a driver, classified as Standard at the start of the first year,
will be classified as Standard at the start of the fourth year.
[Answer: 0.409.]

5. Consider the situation in Problem 4 again. Find the probability that a driver,
classified as Standard at the start of the first year, will be classified as Standard
at the start of each of the first four years.
[Answer: 0.125.]

6. Consider the CCRC model in Example 1.21. Find the probability that a resi-
dent, in Independent Living at time 1, will not be Gone at time 3.
[Answer: 0.8175.]

7. Consider a disability model with four states, numbered in order: Active, Tem-
porarily Disabled, Permanently Disabled, and Inactive. Suppose that the
transition-probability matrices for a new employee (at time 0) are as given
in the Illustrative Matrices in Section 3.1. For an Active employee at time 1,
find the probability the employee is Inactive at time 4.
[Answer: 0.3535.]

8. Consider a four-state non-homogeneous Markov Chain with transition proba-
bility matrices given by the Illustrative Matrices in Section 3.1. For a subject
in State #2 at time 3, find the probability that the subject transitions from
State #1 at time 5 to State #3 at time 6.
[Answer; 0.033.]

9. (Theory.) Extend Example 1.17 in general for homogeneous Markov Chains
with two states to prove that 2Q = Q2.

10. (Theory.) Extend Problem 9 to non-homogeneous Markov Chains with r states
to prove that 2Qn = QnQn+1.

11. (Theory.) Extend Problem 10 to prove Theorem 1.18 on longer-term probabil-
ities.



3
An illustrative
non-homogeneous
Markov Chain

This chapter presents a set of illustrative transition-probability matrices and cash
flows for use in examples and problems.

3.1 Illustrative transition-probability matrices

Consider a non-homogeneous Markov Chain with four states numbered 1, 2, 3, 4.
The transition-probability matrices given below have 0 or 1 in certain positions so that
the models make sense for disability models as in Example 1.11 and Continuing Care
Retirement Community models as in Example 1.13. The other probabilities have been
chosen arbitrarily and of course are unlikely to be appropriate for real-life situations.

Transition-probability matrices are given at times 0, 1, 2, 3, 4, 5, 6, and 7, with the
same matrix for all times n � 8; this final matrix is chosen so that the subject is certain
to reach State #4 by time 9 and then remain there forever.

Q0 =

2

64

0.80 0.10 0.05 0.05
0.20 0.60 0.10 0.10
0 0 0.80 0.20
0 0 0 1

3

75 , Q1 =

2

64

0.70 0.15 0.10 0.05
0.20 0.50 0.20 0.10
0 0 0.70 0.30
0 0 0 1

3

75 ,

Q2 =

2

64

0.60 0.15 0.15 0.10
0.20 0.40 0.25 0.15
0 0 0.60 0.40
0 0 0 1

3

75 , Q3 =

2

64

0.50 0.20 0.20 0.10
0.20 0.30 0.35 0.15
0 0 0.50 0.50
0 0 0 1

3

75 ,

Q4 =

2

64

0.40 0.20 0.20 0.20
0.10 0.30 0.30 0.30
0 0 0.40 0.60
0 0 0 1

3

75 , Q5 =

2

64

0.30 0.20 0.30 0.20
0.10 0.20 0.40 0.30
0 0 0.30 0.70
0 0 0 1

3

75 ,
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Q6 =

2

64

0.20 0.20 0.30 0.30
0.10 0.10 0.40 0.40
0 0 0.20 0.80
0 0 0 1

3

75 , Q7 =

2

64

0.10 0.10 0.30 0.50
0.05 0.05 0.30 0.60
0 0 0.10 0.90
0 0 0 1

3

75 ,

and, for n � 8, Qn =

2

64

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

3

75 .

3.2 Illustrative cash flows upon transitions

This section presents some illustrative cash flows upon transitions between states in
the non-homogeneous Markov Chain described in Section 3.1. The particular values for
the cash flows are not intended to be meaningful—rather they were chosen to be easily
distinguishable from one another so that you can see from where values come in Examples.

For convenience in displaying the values, I’ve entered the cash flow `+1C(i,j) that
occurs at time ` + 1 as the (i,j)-entry of a matrix `+1C.

1C =

2

64

1 2 3 4
5 6 7 8
0 0 9 10
0 0 0 0

3

75 , 2C =

2

64

11 12 13 14
15 16 17 18
0 0 19 20
0 0 0 0

3

75 ,

3C =

2

64

21 22 23 24
25 26 27 28
0 0 29 30
0 0 0 0

3

75 , 4C =

2

64

31 32 33 34
35 36 37 38
0 0 39 40
0 0 0 0

3

75 ,

5C =

2

64

41 42 43 44
45 46 47 48
0 0 49 50
0 0 0 0

3

75 , 6C =

2

64

51 52 53 54
55 56 57 58
0 0 59 60
0 0 0 0

3

75 ,

7C =

2

64

61 62 63 64
65 66 67 68
0 0 69 70
0 0 0 0

3

75 , 8C =

2

64

71 72 73 74
75 76 77 78
0 0 79 80
0 0 0 0

3

75 ,

and, for ` � 8, `+1C =

2

64

0 0 0 81
0 0 0 82
0 0 0 83
0 0 0 0

3

75 .


