Given name and surname: \qquad

Student No: \qquad
Signature: \qquad

INSTRUCTIONS:

1. Please write everything in ink.
2. This exam is a 'closed book' test, duration 60 minutes.
3. Only non-programmable calculators are permitted.
4. There are five questions (each 20%) and a bonus question (10\%).

USEFUL FORMULAS:

For $x \geq 0, t \in[0,1)$ and $k=0,1,2, \ldots$, if the uniform distribution of deaths assumption holds for the life-status (x), then the following is true

$$
{ }_{t+k} p_{x} \approx(1-t)_{k} p_{x}+t_{k+1} p_{x}
$$

GOOD LUCK!

1. You are given the following life table

x	l_{x}	d_{x}	p_{x}	q_{x}
95	-	-	-	0.4
96	-	-	0.2	-
97	-	72	-	1

Also, you are given that $l_{90}=1000$ and $l_{93}=825$. Under the assumption that deaths are uniformly distributed over each year of age, compute the probability that (90) dies between ages 93 and 95.5.

$$
\begin{aligned}
& \text { we loo for } 3 / 2.5990=\frac{190+3-190+3+2.5}{190}=\frac{193-195.5}{190}=\frac{103-\left(195-0.5 d_{55}\right)}{190} \\
& \text { Note that } \operatorname{lgaz}^{2}=\frac{d_{g 7}}{9 g t}=72 \\
& 196=\frac{\operatorname{lot}}{P_{96}}=360 \\
& 195=\frac{1 g 6}{p 95} 2600 \\
& d_{95} 21_{25}-\log _{96} 2240 \\
& \text { (D) } 2 \frac{825-(600-0.5 \cdot 240)}{1,000}=0.3450 \text {. }
\end{aligned}
$$

2. Assume that the future life-times of the life-statuses (x) and (y) are independent and follow Makeham's law, that is $\mu(t)=c+a \times b^{t}, t>0$, where a, b, c are positive parameters, and $x, y \geq 0$ are not necessarily equal. Find a joint life-status $(w: w)$ that has force of mortality equal to the force of mortality of the joint life-status $(x: y)$ for all $t>0$.
Sol
$\Gamma_{\omega: w}(t)=\mu_{x: y}(t)$
So $2\left(c+a b^{t} b^{\omega}\right)=2 a+a b^{t}\left(b^{x}+b^{y}\right)$
Or $2 c+2 a b^{\epsilon} b^{W}=2 c+a b^{t}\left(b^{2}+b^{5}\right)$
or $b^{w}=\frac{1}{2}\left(b^{2}+b^{y}\right)$
ar $w \ln b^{2} \ln \frac{1}{2}\left(b^{2}+b^{2}\right)$
Hence $w=\ln 0,5\left(b^{x}+b^{5}\right) / \ln b$.
3. Use the illustrative life-table and compute the probability ${ }_{2.75} q_{85.5}$ using the CFM approximation method.

$$
\begin{aligned}
& \text { Sol } \\
& \overline{\text { We seen }} \\
& 275980.5=1-2.85 p_{05.5}=1-0.0 p_{85.5} 2 p_{86} 0.25 p_{88} \\
& \text { Fun }_{2} 1 \text { - oesp85: 2p86-0.25 } p_{28} \\
& =1-\left(p_{05}\right)^{0.5} \quad p_{36} p_{17} \cdot\left(p_{17}\right)^{0.25} \\
& \begin{array}{l}
=1-\left(1-\frac{1}{1,000}(123.8967)\right)^{0.5} \cdot\left(1-\frac{1}{1,000} 134.9367\right) \cdot\left(1-\frac{1}{1,0000} 146.8926\right) \\
\cdot\left(1-\frac{1}{1,000} 150.9121\right)^{0.25}
\end{array}
\end{aligned}
$$

4. Let $T^{\prime}(x), T^{\prime}(y), \xi$ be independent random variables distributed exponentially with the respective rate parameters $\lambda_{x}^{\prime}>0, \lambda_{y}^{\prime}>0, \lambda>0$. Set $T(x)=\left(T^{\prime}(x) \wedge \xi\right)$ and $T(y)=\left(T^{\prime}(y) \wedge \xi\right)$. (Recall that, for instance, $\mathbb{P}(\xi>t)=e^{-\lambda t}, \lambda>0, t \geq 0$.) Derive the probability $\mathbb{P}(T(x: y) \geq t), t \geq 0$. Also, show that the probability of simultaneous death is not in generally zero and derive an expression for this probability.

$$
\begin{aligned}
& \text { Sol } \\
& t \varphi \circ 0: 0^{2} \mathbb{P}\left(T^{\prime}(x) \geqslant t, T^{\prime}(y) \geqslant t, \xi \geqslant t\right) \frac{4}{2} e^{-t\left(\lambda+\lambda_{2}+\lambda_{y}\right)}, t \geqslant 0 \\
& \begin{array}{c}
A(s 0 \\
\phi(T(x)>T(y))=中\left(T^{\prime}(2)>\xi, T^{\prime}(\xi)>\xi\right)=\int_{0}^{\infty} \mathbb{P}\left(T^{\prime}(x)>\xi, T^{\prime}(s)>\xi \mid \xi=t\right) f_{\xi}(t) d t \\
\frac{u}{2} \int_{0}^{v}-\lambda_{x} t-\lambda_{s} t-\lambda t
\end{array} \\
& \frac{u}{2} \int_{0}^{V} e^{-\lambda_{x} t} e^{-\lambda_{\delta} t} \lambda e^{-\lambda t} d t \\
& =\frac{\lambda}{\lambda+\lambda_{2}+\lambda_{y}} \neq 0
\end{aligned}
$$

5. The following excerpt from a life table applies to each of two independent lives (80) and (81)

x	q_{x}
80	0.50
81	0.75
82	1.00

Compute $q_{80: 81}$ and $q_{\overline{80: 81}}$.

$$
\begin{aligned}
& \delta \\
& \begin{array}{r}
\overline{q_{90.81}}=1-p_{80: 81} \begin{array}{r}
\frac{4}{2} \\
\text { Also }
\end{array} \quad \begin{array}{r}
p_{80} p_{81}=1-(1-980)(1-981) \\
21-0.5 .0 .2520 .875
\end{array}
\end{array} \\
& 920: 11=980 \cdot 981=0.50 \cdot 0.7520 .325
\end{aligned}
$$

6. The function $x \mapsto l_{x} \mu_{x}$ is constant for all $0 \leq x<\omega(>0)$. For $\omega=100$, compute the variance of the random variable $T(88)$.

$$
\begin{aligned}
& \frac{\text { Sol }}{\text { Since } I_{2} p_{2} \text { is constant, } I_{2} \text { is linear. Hence }} \\
& \text { He } R V T(8 \gamma) \text { no Uni }[0,12] \text { So } \\
& \text { 本 }[T(70)]=\int_{0}^{12}+\left.\frac{1}{12} d t 2 \frac{1}{n} \frac{t^{2}}{2}\right|_{0} ^{12}=6 \\
& \left.\mathbb{E} L T(12)^{2}\right)=\left.\int_{0}^{12} t^{2} \frac{1}{12 t} 2 \frac{1}{n} \frac{t^{3}}{3}\right|_{0} ^{12}=\frac{1}{12} \frac{n^{3}}{3}=\frac{144}{3} \\
& \operatorname{Var}(T(22))=\frac{144}{3}-\frac{m 4}{4}=\frac{4.144-3-144}{12}=\frac{144}{n}=12
\end{aligned}
$$

