
Random survivorship group

Life table

Definition 1.1 (Life table.)

We shall call the distribution of (u) that describes its life time
with respect to all existing sources of decrement a multiple
decrement life table.

Example 1.1

[x , x + 1) q(1)
x q(2)

x qτ

x lτx d (1)
x d (2)

x

[0, 1) 0.02 0.05 0.07 1000 20 50
[1, 2) 0.03 0.06 0.09 930 27.9 55.8
[2, 3) 0.04 0.07 0.11 846.3 33.85 59.24
[3, 4) 0.05 0.08 0.13 753.21 37.66 60.26
[4, 5) 0.06 0.09 0.15 655.29 39.32 58.98
. . . . . . . . . . . . . . . . . . . . .

Looks like we shall need even more notations...
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Random survivorship group

Definition 1.2 (Random number of survivors to age x .)

Let us have a group of lτ0 new born children. Then, for 1τ{j}
indicating the survival of the new born child number j to age x ,

Lτ (x) :=
lτ0
∑

j=1

1τ{j}

denotes the number of children alive at age x . Lτ (x) is an r.v.

Definition 1.3 (Expected number of survivors to age x .)

For xpτ

0 = P[1τ{j} = 1] for every j = 1, . . . , l0, the expectation of
Lτ (x) is

lτx := E[Lτ (x)] = E





lτ0
∑

j=1

1τ{j}



 = lτ0 ·x pτ

0 .

Edward Furman Actuarial mathematics MATH 3280 3 / 15



Random survivorship group

More generally

The same can be done for any person or life status age y for
y ≥ 0. Namely, the number of people surviving from age y to
age x , where x ≥ y is

lτx := lτy · x−ypτ

y .

Definition 1.4

Let nDτ (x) := Lτ (x)− Lτ (x + n) denote the group of deaths
between ages x and x + n. We then define the expected
number of deaths (out of lτ0 and between the aforementioned
ages)

nd τ

x := E[nDτ (x)] = lτ0 (xpτ

0 − x+npτ

0) = lτx − lτx+n.
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Random survivorship group

Definition 1.5

We shall define by nDi(x), the random number of people age 0
that leave the group between the ages x and x + n. due to
source of decrement i . Then the expected number of such
people is

nd (i)
x := E[nDi(x)] = lτ0

∫ x+n

x
tpτ

0 · µ(i)(t)dt

= lτ0

∫ x+n

x
ypτ

0 · t−y pτ

y · µ(i)(t)dt

= lτy

∫ x+n−y

x−y
spτ

y · µ(i)(s + y)ds,

for any y ≤ x .
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Random survivorship group

Remark.

We should have that

nDτ (x) =
m
∑

i=1

nDi(x),

for m being the number of sources of decrement and fixed x
and n. Thus

nd τ

x =

m
∑

i=1

nd (i)
x ,

Definition 1.6

Divide the previous identity by lτx throughout, and have that

nq(i)
x := nd (i)

x /lτx and
m
∑

i=1

nq(i)
x = nqτ

x
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Random survivorship group

Remember.

For, e.g., two decrements only we have that tqτ

x = tq
(1)
x + tq

(2)
x

as we it has been just shown. However, same additive relation
does not hold for the p-related functions. Namely,

tpτ

x = 1 − tqτ

x = 1 − tq
(1)
x − tq

(2)
x

6= 1 − tq
(1)
x + 1 − tq

(2)
x

= tp
(1)
x + tp

(2)
x .

Definition 1.7

The force of decrement due to the i-th source of decrement is
defined for a new born child as

µi(t) :=
1

tp0

d
dt tq

(i)
0 .
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Random survivorship group

Proposition 1.1

We have that

µτ (t) =
m
∑

i=1

µi(t).

Proof.

Recall that

tpτ

0 · µτ (t) =
d
dt

qτ (t) =
d
dt

m
∑

i=1

tq
(i)
0 =

m
∑

i=1

d
dt tq

(i)
0 =t pτ

0

m
∑

i=1

µi(t),

as needed.

Note that for µτ (t) to be a legitimate force of mortality, there is
no need that

lim
t↑∞

µi(t) = ∞ for every i = 1, . . . ,m.
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Random survivorship group

Definition 1.8

Let (T (u), I(u))′ := (T , I)′ be a random vector with T (u)
standing for the future life time of a status age u, and I(u)
denoting the source of decrement. The expression

fT , I(t , i)∆t := P[t < T ≤ t +∆t , I = i], t ∈ R+, i = 1, . . . ,m

is then interpreted as the probability that a life status will leave
in the interval (u + t , u + t +∆t] due to the i-th source of
decrement. Also,

fT (t) := lim
∆t↓0

1
∆t

P[t < T ≤ t +∆t] =
m
∑

i=1

fT , I(t , i)

and

pI(i) := P[I = i] =
∫ ∞

0
fT , I(t , i) := ∞q(i)

u .
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Random survivorship group

Remark.

Note that the density fT (t) is exactly the one we have
encountered in the single decrement life tables, and it is
interpreted using ∆t as fT (t)∆t is the probability that (u) leaves
the life table (all possible decrements are included). Also, pI(i)
is a new object, and it is seen as the probability (u) leaves due
to the i-th source of decrement any time. Of course

∫ ∞

0
fT (t)dt = 1 and

m
∑

i=1

pI(i) = 1.

Definition 1.9

Similarly to Definition 1.8. we define the probability that (u)
leaves due to the i-th source of decrement during the following
t years as

tq
(i)
u :=

∫ t

0
fT , I(s, i)ds, i = 1, . . . ,m.
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Random survivorship group

Remark.

As when discussing the random survivorship group, we
redenote

tqτ

u := P[T (u) < t] =
∫ t

o
fT (s)ds

tpτ

u := P[T (u) ≥ t] = 1 −t qτ

u

µτ (u + t) :=
1

tqτ
u

d
dt tqτ

u

µ(i)(u + t) := lim
h↓0

1
h

P[t < T ≤ t + h, I = i | T ≥ t]

=
fT , I(t , i)
P[T ≥ t]

=
fT , I(t , i)

tpτ
u

, from where

fT , I(t , i) := tpτ

u · µ(i)(u + t)
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Random survivorship group

Proposition 1.2

We have that

µτ (u + t) =
m
∑

i=1

µi(u + t)

and

tqτ

u =
m
∑

i=1

tq
(i)
u .

Proof.

Indeed

tqτ

u =

∫ t

0
fT (s)ds =

∫ t

0

m
∑

i=1

fT , I(s, i)ds

=

m
∑

i=1

∫ t

0
fT , I(s, i)ds =

m
∑

i=1

tq
(i)
u ,
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Random survivorship group

Proof.

that proves the second expression. Differentiating it throughout
completes the proof.

Proposition 1.3

The conditional density of I|T is

fI| T (i |t) =
µi(u + t)
µτ (u + t)

.
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Random survivorship group

Proposition 1.4

The p.m.f. of (K , I)′ is P[K = k , I = i] = kpτ

u · q(i)
u+k , for fixed

u ≥ 0, k ≥ 0, and i = 1, . . . ,m.

Proof.

P[K = k , I = i] = P[k ≤ T < k + 1, I = i]

= P[k < T ≤ k + 1, I = i]

=

∫ k+1

k
tpτ

u · µi(u + t)dt

=

∫ 1

0
s+kpτ

u · µi(u + s + k)ds

=

∫ 1

0
spτ

u+k · kpτ

u · µi(u + s + k)ds

= kpτ

u · q(i)
u+k ,
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Proof.

that is true if there is no select periods in the table and thus
completes the proof.
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Proposition.

Fix x ≥ 0, then the r.v.’s T (x) and I(x) are independent if and

only if, for i = 1, . . . ,m(∈ N) and t ≥ 0,

µ(i)(x + t) = ciµ
(τ)(x + t),

with

ci =

∫ ∞

0
tp

τ

xµ
(i)(x + t)dt = P[I = i].

Proof.

Obviously T (x) and I(x) are independent iff

fT ,I(t , i) = fT (t)fI(i),

where t ≥ 0, i = 1, . . . ,m(∈ N).
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Also

fT ,I(t , i) = tp
(τ)
x µ(i)(x + t)

= tp
(τ)
x ciµ

(τ)(x + t)

= tp
(τ)
x µ(τ)(x + t)

∫ ∞

0
tp

τ

xµ
(i)(x + t)dt

= fT (t)fI(i),

which completes the proof.
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Proposition

Let T
′(1)(x) and T

′(2)(x) be independent, and let also T (x) be

independent on I(x), then

tp
′(i)
x =

(

tp
(τ)
x

)ci

, t ≥ 0, i = 1, . . . ,m(∈ N).

Proof

tp
′(1)
x = P[T

′(1)(x) ≥ t] = P[T
′(1)(x) ≥ t ,T

′(2)(x) ≥ 0]
ind
= P[T

′(1)(x) ≥ t]P[T
′(2)(x) ≥ 0]

ind
= exp

{

−

∫ t

0

ciµ
(τ)(x + s)ds

}

=
(

tp
(τ)
x

)ci

,

which completes the proof.
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Proposition

Fix x ≥ 0 and let t ≥ 0, then the following are equivalent, for

i = 1, . . . ,m(∈ N):

a.) tq
(i)
x = ci · tq

(τ)
x

b.) µ(i)(x + t) = ci · µ
(τ)(x + t)

c.) 1 − tq
′(i)
x =

(

1 − tq
(τ)
x

)ci

.

Poof

a.) ⇒ b.) as

tq
(i)
x = ci · tq

(τ)
x

⇒

∫ t

0
sp

(τ)
x µ(i)(x + s)ds = ci

∫ t

0
sp

(τ)
x µ(τ)(x + s)ds

Edward Furman Actuarial mathematics MATH 3280 5 / 10



and after differentiating

tq
(i)
x = ci · tq

(τ)
x

⇒ tp
(τ)
x µ(i)(x + t) = ci · tp

(τ)
x µ(τ)(x + t)

⇒ µ(i)(x + t) = ci · µ
(τ)(x + t), for t ≥ 0.

As for b.) ⇒ c.),

µ(i)(x + t) = ci · µ
(τ)(x + t)

⇒ sp
′(i)
x =

(

sp
(τ)
x

)ci

⇒ 1 − sq
′(i)
x =

(

1 − sq
(τ)
x

)ci

, for s ≥ 0.
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As for c.) ⇒ b.), we have that

sp
′(i)
x =

(

sp
(τ)
x

)ci

⇒ µ(i)(x + t) =
1

(tp
(τ)
x )ci

ci

(

sp
(τ)
x

)ci−1

tp
(τ)
x µ(τ)(x + t)

⇒ µ(i)(x + t) = ciµ
(τ)(x + t), for t ≥ 0.

At last, b.) ⇒ a.), as

µ(i)(x + t) = ciµ
(τ)(x + t)

⇒

∫ t

0
sp

(τ)
x µ(i)(x + s)ds = ci

∫ t

0
sp

(τ)
x µ(τ)(x + s)ds

⇒ tq
(i)
x = ci · tq

(τ)
x , for t ≥ 0.
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Corollary

If either the CLT or the UDD assumption holds for each reason

of decrement, then

tq
(i)
x = ci · tq

(τ)
x

Proof.

If the CLT holds, then µ(i)(x + t) = µ(i)(x) for x ≥ 0 and

t ∈ [0, 1), then

µ(i)(x + t) =
µ(i)(x)

µ(τ)(x)
µ(τ)(x) = ci · µ

(τ)(x),

and the statement is true by applying the previous proposition.

Also, if the UDD holds, then tq
(i)
x = t · q

(i)
x , and therefore
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tq
(i)
x

UDD
= t · q

(i)
x = t ·

q
(i)
x

q
(τ)
x

· q
(τ)
x

UDD
=

q
(i)
x

q
(τ)
x

tq
(τ)
x ,

leading to

tq
(i)
x

UDD
= ci · tq

(τ)
x ,

and to the required statement by the previous proposition. This

completes the proof.
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Note

Remember that the separation of say p
(τ)
x into p

(i)
x is possible

for p
′(i)
x and p

(τ)
x not zero. If this is true, then an alternative

approach is needed. We shall usually assume UDD or CFM in

the associated single decrement tables rather than in the

multiple decrement ones. The in the UDD case

q
(i)
x =

∫ 1

0
tp

(τ)
x µ(i)(x + t)dt

=

∫ 1

0

m
∏

j=1, j 6=i

tp
′(j)
x · tp

′(j)
x µ(i)(x + t)dt

UDD
= q

′(j)
x

∫ 1

0

m
∏

j=1, j 6=i

(1 − tq
′(j)
x )dt .
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Constructing multiple decrement tables

De� nition 1.1 (Associated single decrement table.)
We shall de� ne:

t p
′(j)
u := exp



−

 t

0
µ(j)(u + s)ds



,

and thus
tq

′(j)
u := 1 − t p

′(j)
u ,

for a life status u and t ≥ 0 and j = 1, . . . ,m ∈ N.

Note.
Notice that

q(j) = q′(j).
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Constructing multiple decrement tables

How do we build a multiple decrement table?
The usual way is to use the associated single decrement
functions. Thus, if, say, p

′(j)
x are given for j = 1, . . . ,m and all

x = 0,1, . . . , then we can � nd p τ
x and qτ

x . Breaking, e.g., the
latter quantity into q(j)

x , j = 1, . . . ,m requires additional
assumption.

Proposition 1.1 (CFM assumption)
Let the force of the j-th decrement µ(j), the associated force of
decrement µ′(j) and the total force of decrement µτ be constant
on the interval [x , x + 1) for all x = 0, 1, . . .. Then

sq(j)
x

CFM
=

ln p
′(j)
x

ln
m

j=1 p
′(j)
x

·



1 −

m


j=1
sp

′(j)
x



 .
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Constructing multiple decrement tables

Proof.
We have that by assumption

µ(j)(x + t) = µ(j)(x) and µτ (x + t) = µτ (x) for t ∈ [0, 1).

Thus, for 0 ≤ s < 1, it holds that

sq(j)
x

CFM
= µ(j)(x)

 s

0
t pτ

x dt = µ(j)(x)
µτ (x)

 s

0
tpτ

xµ
τ (x)dt CFM

=
µ(j)(x)
µτ (x) sqτ

x .

In addition, for r ∈ [0, 1), it holds that

− ln (r pτ
x )

CFM
= rµτ (x) as well as − ln



r p
′(j)
x



CFM
= rµ(j)(x)

Thus for r ∈ (0, 1), we have that

sq(j)
x

CFM
=

ln


r p
′(j)
x



ln (r pτ
x )

sqτ
x ,
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Constructing multiple decrement tables

Proof. Cont.
which after taking the limit r ↑ 1 results in

sq(j)
x

CFM
=

ln


p
′(j)
x



ln (pτ
x )

sqτ
x ,

that completes the proof.

Note.

If p
′(j)
x or pτ

x equal zero in the proposition above, we can not use
the formulas.

Edward Furman Actuarial mathematics MATH 3280 5 / 7



Constructing multiple decrement tables

Proposition 1.2
The UDD assumption Under the UDD assumption, we have
that:

q(j)
x =

ln p
′(j)
x

ln
m

j=1 p
′(j)
x

·



1 −

m


j=1
p

′(j)
x



 .

Proof.
We in fact assume that, for t ∈ [0, 1), it holds that

t q(j)
x

UDD
= tq(j)

x and t q(τ)
x

UDD
= tq(τ)

x

Also,
t pτ

xµ
(j)(x + t) = tpτ

x
1

tpτ
x

∂

∂t tq(j)
x =

UDD
= q(j)

x

and
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Constructing multiple decrement tables

Proof. Cont.

µ(j)(x + t) UDD
=

q(j)
x

1 − tqτ
x
.

Thus, we can � nd the associated single decrement function as

tp
′(j)
x = exp



−

 t

0
µ(j)(x + s)ds

UDD
= exp



−

 t

0

q(j)
x

1 − sqτ
x

ds


= exp


q(j)
x

qτ
x

 t

0
d ln (1 − sqτ

x )



UDD
= exp



q(j)
x

qτ
x

ln (t pτ
x )



= (t pτ
x )

q(j)
x /qτ

x ,

that completes the proof.
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Associated single decrement tables

Creating a multiple decrement table.

We are often given m ∈ N simple life tables (i.e., those with
single decrement), and we then want to unify them to produce
one multiple decrement life table with m sources of decrement.

Definition 1.10

The associated single decrement functions are defined as

tp
�(i)
u := exp

�

−

� t

0
µi(u + s)ds

�

and

tq
�(i)
u := 1− t p

�(i)
u .
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Random survivorship group

Proposition 1.5

We have that

tp
(τ)
u =

m�

i=1

tp
�(i)
u ,

for u ≥ 0 and t ≥ 0.

Proof.

It holds that

tp
(τ)
u = exp

�

−

� t

0
µ(τ)(u + s)ds

�

= exp

�

−

� t

0

m�

i=1

µ(i)(u + s)ds

�

=

m�

i=1

exp

�

−

� t

0
µ(i)(u + s)ds

�

,
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Random survivorship group

Proof.

which by definition of the associated functions completes the
proof.

Corollary 1.1

We have that, for i = 1, . . . ,m and non-negative u and t,

tp
�(i)
u ≥t p

(τ)
u .

Also, the above becomes an equality if m = 1.

Corollary 1.2

We have that, for i = 1, . . . ,m and non-negative u and t,

tq
�(i)
u ≥t q

(i)
u .
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Random survivorship group

Proof.

We have shown that

sp
�(i)
u ≥s p

(τ)
u .

Thus

sp
�(i)
u µ(i)(u + s) ≥s p

(τ)
u µ(i)(u + s).

And

� t

0
sp

�(i)
u µ(i)(u + s)ds ≥

� t

0
sp

(τ)
u µ(i)(u + s)ds = t q

(i)
u .

The fact that � t

0
sp

�(i)
u µ(i)(u + s)ds = tq

�(i)
u

follows see below) and thus completes the proof

−
∂

∂t
tp

�(i)
u = −

∂

∂t
exp

�

−

� t

0
µi(u + s)ds

�

= t p
�(i)
u µ(i)(u + t).
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