Mathematics of Life Contingencies. Math 3280 3.00 F Instructor: Edward Furman Homework 3

Unless otherwise indicated, all lives in the following questions are subject to the same law of mortality and their times until death are independent random variables.

- 1. If $s(x) = 1 \frac{x}{100}, 0 \le x \le 100$, calculate: a. $\mu(x)$ b. $F_X(x)$ c. $f_X(x)$ d. $\Pr(10 < X < 40)$.
- 2. Given the survival function of question 1, determine the survival function, force of mortality, and p.d.f of the future lifetime of (40).
- 3. If $\mu(x) = 0.001$ for $20 \le x \le 25$, evaluate $_{2|2}q_{20}$.
- 4. Show that

$$\frac{d}{dx} t p_x = t p_x \left[\mu(x) - \mu(x+t) \right]$$

- 5. If $\mu(x+t) = t$, $t \ge 0$, calculate $_t p_x \ \mu(x+t)$.
- 6. You are given that

$$s(x) = (\frac{100}{100 + x})^2$$

Calculate $_5q_{40}$.

7. You are given $\mu_x = \frac{a}{w-x}$, prove that

$$_t p_x = \left(\frac{w - x - t}{w - x}\right)^a$$

8. You are given that the force of mortality is

$$\mu_x = \frac{0.5}{100 - x}$$

Calculate the probability that (36) survives to age 75.

- 9. You are given:
 - 1) $\hat{\mu}_{x+t} = \mu_{x+t} k, \ 0 \le t \le 1$
 - 2) $\hat{q}_x = 0$ where \hat{q}_x is based on the force of mortality $\hat{\mu}_{x+t}$ Determine k.

GOOD LUCK!