Mathematics of Life Contingencies. Math 3280 3.00 F
 Instructor: Edward Furman

Homework 3

Unless otherwise indicated, all lives in the following questions are subject to the same law of mortality and their times until death are independent random variables.

1. If $s(x)=1-\frac{x}{100}, 0 \leq x \leq 100$, calculate:
a. $\mu(x)$
b. $F_{X}(x)$
c. $f_{X}(x)$
d. $\operatorname{Pr}(10<X<40)$.
2. Given the survival function of question 1, determine the survival function, force of mortality, and p.d.f of the future lifetime of (40).
3. If $\mu(x)=0.001$ for $20 \leq x \leq 25$, evaluate ${ }_{2 \mid 2} q_{20}$.
4. Show that

$$
\frac{d}{d x}{ }_{t} p_{x}={ }_{t} p_{x}[\mu(x)-\mu(x+t)]
$$

5. If $\mu(x+t)=\mathrm{t}, t \geq 0$, calculate ${ }_{t} p_{x} \mu(x+t)$.
6. You are given that

$$
s(x)=\left(\frac{100}{100+x}\right)^{2}
$$

Calculate ${ }_{5} q_{40}$.
7. You are given $\mu_{x}=\frac{a}{w-x}$, prove that

$$
{ }_{t} p_{x}=\left(\frac{w-x-t}{w-x}\right)^{a}
$$

8. You are given that the force of mortality is

$$
\mu_{x}=\frac{0.5}{100-x}
$$

Calculate the probability that (36) survives to age 75 .
9. You are given:

1) $\hat{\mu}_{x+t}=\mu_{x+t}-k, 0 \leq t \leq 1$
2) $\hat{q}_{x}=0$ where \hat{q}_{x} is based on the force of mortality $\hat{\mu}_{x+t}$ Determine k.

GOOD LUCK!

